Step |
Hyp |
Ref |
Expression |
1 |
|
scmatid.a |
|
2 |
|
scmatid.b |
|
3 |
|
scmatid.e |
|
4 |
|
scmatid.0 |
|
5 |
|
scmatid.s |
|
6 |
|
scmatcrng.c |
|
7 |
|
crngring |
|
8 |
1 2 3 4 5
|
scmatsrng |
|
9 |
7 8
|
sylan2 |
|
10 |
6
|
subrgring |
|
11 |
9 10
|
syl |
|
12 |
|
simp1lr |
|
13 |
|
eqid |
|
14 |
|
simp2 |
|
15 |
|
simp3 |
|
16 |
1 13 5
|
scmatmat |
|
17 |
16
|
imp |
|
18 |
17
|
adantrr |
|
19 |
18
|
3ad2ant1 |
|
20 |
1 3 13 14 15 19
|
matecld |
|
21 |
1 13 5
|
scmatmat |
|
22 |
21
|
imp |
|
23 |
22
|
adantrl |
|
24 |
23
|
3ad2ant1 |
|
25 |
1 3 13 14 15 24
|
matecld |
|
26 |
|
eqid |
|
27 |
3 26
|
crngcom |
|
28 |
12 20 25 27
|
syl3anc |
|
29 |
28
|
ifeq1d |
|
30 |
29
|
mpoeq3dva |
|
31 |
7
|
anim2i |
|
32 |
|
eqid |
|
33 |
1 2 3 4 5 32
|
scmatdmat |
|
34 |
7 33
|
sylan2 |
|
35 |
1 2 3 4 5 32
|
scmatdmat |
|
36 |
7 35
|
sylan2 |
|
37 |
34 36
|
anim12d |
|
38 |
37
|
imp |
|
39 |
1 2 4 32
|
dmatmul |
|
40 |
31 38 39
|
syl2an2r |
|
41 |
38
|
ancomd |
|
42 |
1 2 4 32
|
dmatmul |
|
43 |
31 41 42
|
syl2an2r |
|
44 |
30 40 43
|
3eqtr4d |
|
45 |
44
|
ralrimivva |
|
46 |
6
|
subrgbas |
|
47 |
46
|
eqcomd |
|
48 |
|
eqid |
|
49 |
6 48
|
ressmulr |
|
50 |
49
|
eqcomd |
|
51 |
50
|
oveqd |
|
52 |
50
|
oveqd |
|
53 |
51 52
|
eqeq12d |
|
54 |
47 53
|
raleqbidv |
|
55 |
47 54
|
raleqbidv |
|
56 |
9 55
|
syl |
|
57 |
45 56
|
mpbird |
|
58 |
|
eqid |
|
59 |
|
eqid |
|
60 |
58 59
|
iscrng2 |
|
61 |
11 57 60
|
sylanbrc |
|