Metamath Proof Explorer


Theorem scmate

Description: An entry of an N x N scalar matrix over the ring R . (Contributed by AV, 18-Dec-2019)

Ref Expression
Hypotheses scmatmat.a A = N Mat R
scmatmat.b B = Base A
scmatmat.s S = N ScMat R
scmate.k K = Base R
scmate.0 0 ˙ = 0 R
Assertion scmate N Fin R Ring M S I N J N c K I M J = if I = J c 0 ˙

Proof

Step Hyp Ref Expression
1 scmatmat.a A = N Mat R
2 scmatmat.b B = Base A
3 scmatmat.s S = N ScMat R
4 scmate.k K = Base R
5 scmate.0 0 ˙ = 0 R
6 eqid 1 A = 1 A
7 eqid A = A
8 4 1 2 6 7 3 scmatscmid N Fin R Ring M S c K M = c A 1 A
9 oveq M = c A 1 A I M J = I c A 1 A J
10 simpll1 N Fin R Ring M S I N J N c K N Fin
11 simpll2 N Fin R Ring M S I N J N c K R Ring
12 simpr N Fin R Ring M S I N J N c K c K
13 simplr N Fin R Ring M S I N J N c K I N J N
14 1 4 5 6 7 scmatscmide N Fin R Ring c K I N J N I c A 1 A J = if I = J c 0 ˙
15 10 11 12 13 14 syl31anc N Fin R Ring M S I N J N c K I c A 1 A J = if I = J c 0 ˙
16 9 15 sylan9eqr N Fin R Ring M S I N J N c K M = c A 1 A I M J = if I = J c 0 ˙
17 16 ex N Fin R Ring M S I N J N c K M = c A 1 A I M J = if I = J c 0 ˙
18 17 reximdva N Fin R Ring M S I N J N c K M = c A 1 A c K I M J = if I = J c 0 ˙
19 18 ex N Fin R Ring M S I N J N c K M = c A 1 A c K I M J = if I = J c 0 ˙
20 8 19 mpid N Fin R Ring M S I N J N c K I M J = if I = J c 0 ˙
21 20 imp N Fin R Ring M S I N J N c K I M J = if I = J c 0 ˙