Metamath Proof Explorer


Theorem scmateALT

Description: Alternate proof of scmate : An entry of an N x N scalar matrix over the ring R . This prove makes use of scmatmats but is longer and requires more distinct variables. (Contributed by AV, 19-Dec-2019) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypotheses scmatmat.a A = N Mat R
scmatmat.b B = Base A
scmatmat.s S = N ScMat R
scmate.k K = Base R
scmate.0 0 ˙ = 0 R
Assertion scmateALT N Fin R Ring M S I N J N c K I M J = if I = J c 0 ˙

Proof

Step Hyp Ref Expression
1 scmatmat.a A = N Mat R
2 scmatmat.b B = Base A
3 scmatmat.s S = N ScMat R
4 scmate.k K = Base R
5 scmate.0 0 ˙ = 0 R
6 1 2 3 4 5 scmatmats N Fin R Ring S = m B | c K i N j N i m j = if i = j c 0 ˙
7 6 eleq2d N Fin R Ring M S M m B | c K i N j N i m j = if i = j c 0 ˙
8 oveq m = M i m j = i M j
9 8 eqeq1d m = M i m j = if i = j c 0 ˙ i M j = if i = j c 0 ˙
10 9 2ralbidv m = M i N j N i m j = if i = j c 0 ˙ i N j N i M j = if i = j c 0 ˙
11 10 rexbidv m = M c K i N j N i m j = if i = j c 0 ˙ c K i N j N i M j = if i = j c 0 ˙
12 11 elrab M m B | c K i N j N i m j = if i = j c 0 ˙ M B c K i N j N i M j = if i = j c 0 ˙
13 oveq1 i = I i M j = I M j
14 eqeq1 i = I i = j I = j
15 14 ifbid i = I if i = j c 0 ˙ = if I = j c 0 ˙
16 13 15 eqeq12d i = I i M j = if i = j c 0 ˙ I M j = if I = j c 0 ˙
17 oveq2 j = J I M j = I M J
18 eqeq2 j = J I = j I = J
19 18 ifbid j = J if I = j c 0 ˙ = if I = J c 0 ˙
20 17 19 eqeq12d j = J I M j = if I = j c 0 ˙ I M J = if I = J c 0 ˙
21 16 20 rspc2v I N J N i N j N i M j = if i = j c 0 ˙ I M J = if I = J c 0 ˙
22 21 reximdv I N J N c K i N j N i M j = if i = j c 0 ˙ c K I M J = if I = J c 0 ˙
23 22 com12 c K i N j N i M j = if i = j c 0 ˙ I N J N c K I M J = if I = J c 0 ˙
24 23 adantl M B c K i N j N i M j = if i = j c 0 ˙ I N J N c K I M J = if I = J c 0 ˙
25 24 a1i N Fin R Ring M B c K i N j N i M j = if i = j c 0 ˙ I N J N c K I M J = if I = J c 0 ˙
26 12 25 syl5bi N Fin R Ring M m B | c K i N j N i m j = if i = j c 0 ˙ I N J N c K I M J = if I = J c 0 ˙
27 7 26 sylbid N Fin R Ring M S I N J N c K I M J = if I = J c 0 ˙
28 27 ex N Fin R Ring M S I N J N c K I M J = if I = J c 0 ˙
29 28 3imp1 N Fin R Ring M S I N J N c K I M J = if I = J c 0 ˙