Database
BASIC LINEAR ALGEBRA
Matrices
The subalgebras of diagonal and scalar matrices
scmatel
Next ⟩
scmatscmid
Metamath Proof Explorer
Ascii
Unicode
Theorem
scmatel
Description:
An
N
x
N
scalar matrix over (a ring)
R
.
(Contributed by
AV
, 18-Dec-2019)
Ref
Expression
Hypotheses
scmatval.k
⊢
K
=
Base
R
scmatval.a
⊢
A
=
N
Mat
R
scmatval.b
⊢
B
=
Base
A
scmatval.1
⊢
1
˙
=
1
A
scmatval.t
⊢
·
˙
=
⋅
A
scmatval.s
⊢
S
=
N
ScMat
R
Assertion
scmatel
⊢
N
∈
Fin
∧
R
∈
V
→
M
∈
S
↔
M
∈
B
∧
∃
c
∈
K
M
=
c
·
˙
1
˙
Proof
Step
Hyp
Ref
Expression
1
scmatval.k
⊢
K
=
Base
R
2
scmatval.a
⊢
A
=
N
Mat
R
3
scmatval.b
⊢
B
=
Base
A
4
scmatval.1
⊢
1
˙
=
1
A
5
scmatval.t
⊢
·
˙
=
⋅
A
6
scmatval.s
⊢
S
=
N
ScMat
R
7
1
2
3
4
5
6
scmatval
⊢
N
∈
Fin
∧
R
∈
V
→
S
=
m
∈
B
|
∃
c
∈
K
m
=
c
·
˙
1
˙
8
7
eleq2d
⊢
N
∈
Fin
∧
R
∈
V
→
M
∈
S
↔
M
∈
m
∈
B
|
∃
c
∈
K
m
=
c
·
˙
1
˙
9
eqeq1
⊢
m
=
M
→
m
=
c
·
˙
1
˙
↔
M
=
c
·
˙
1
˙
10
9
rexbidv
⊢
m
=
M
→
∃
c
∈
K
m
=
c
·
˙
1
˙
↔
∃
c
∈
K
M
=
c
·
˙
1
˙
11
10
elrab
⊢
M
∈
m
∈
B
|
∃
c
∈
K
m
=
c
·
˙
1
˙
↔
M
∈
B
∧
∃
c
∈
K
M
=
c
·
˙
1
˙
12
8
11
bitrdi
⊢
N
∈
Fin
∧
R
∈
V
→
M
∈
S
↔
M
∈
B
∧
∃
c
∈
K
M
=
c
·
˙
1
˙