Metamath Proof Explorer


Theorem scmatf

Description: There is a function from a ring to any ring of scalar matrices over this ring. (Contributed by AV, 25-Dec-2019)

Ref Expression
Hypotheses scmatrhmval.k K = Base R
scmatrhmval.a A = N Mat R
scmatrhmval.o 1 ˙ = 1 A
scmatrhmval.t ˙ = A
scmatrhmval.f F = x K x ˙ 1 ˙
scmatrhmval.c C = N ScMat R
Assertion scmatf N Fin R Ring F : K C

Proof

Step Hyp Ref Expression
1 scmatrhmval.k K = Base R
2 scmatrhmval.a A = N Mat R
3 scmatrhmval.o 1 ˙ = 1 A
4 scmatrhmval.t ˙ = A
5 scmatrhmval.f F = x K x ˙ 1 ˙
6 scmatrhmval.c C = N ScMat R
7 eqid Base A = Base A
8 eqid 0 R = 0 R
9 2 7 1 8 6 scmatid N Fin R Ring 1 A C
10 3 9 eqeltrid N Fin R Ring 1 ˙ C
11 10 anim1ci N Fin R Ring x K x K 1 ˙ C
12 1 2 6 4 smatvscl N Fin R Ring x K 1 ˙ C x ˙ 1 ˙ C
13 11 12 syldan N Fin R Ring x K x ˙ 1 ˙ C
14 13 5 fmptd N Fin R Ring F : K C