Step |
Hyp |
Ref |
Expression |
1 |
|
scmatrhmval.k |
|
2 |
|
scmatrhmval.a |
|
3 |
|
scmatrhmval.o |
|
4 |
|
scmatrhmval.t |
|
5 |
|
scmatrhmval.f |
|
6 |
|
scmatrhmval.c |
|
7 |
1 2 3 4 5 6
|
scmatf |
|
8 |
7
|
3adant2 |
|
9 |
|
simpr |
|
10 |
|
simpl |
|
11 |
1 2 3 4 5
|
scmatrhmval |
|
12 |
9 10 11
|
syl2an |
|
13 |
|
simpr |
|
14 |
1 2 3 4 5
|
scmatrhmval |
|
15 |
9 13 14
|
syl2an |
|
16 |
12 15
|
eqeq12d |
|
17 |
16
|
3adantl2 |
|
18 |
2
|
matring |
|
19 |
|
eqid |
|
20 |
19 3
|
ringidcl |
|
21 |
18 20
|
syl |
|
22 |
21 10
|
anim12ci |
|
23 |
1 2 19 4
|
matvscl |
|
24 |
22 23
|
syldan |
|
25 |
21 13
|
anim12ci |
|
26 |
1 2 19 4
|
matvscl |
|
27 |
25 26
|
syldan |
|
28 |
24 27
|
jca |
|
29 |
28
|
3adantl2 |
|
30 |
2 19
|
eqmat |
|
31 |
29 30
|
syl |
|
32 |
|
difsnid |
|
33 |
32
|
eqcomd |
|
34 |
33
|
adantl |
|
35 |
34
|
raleqdv |
|
36 |
|
oveq2 |
|
37 |
|
oveq2 |
|
38 |
36 37
|
eqeq12d |
|
39 |
38
|
ralunsn |
|
40 |
39
|
adantl |
|
41 |
10
|
anim2i |
|
42 |
|
df-3an |
|
43 |
41 42
|
sylibr |
|
44 |
|
id |
|
45 |
44 44
|
jca |
|
46 |
|
eqid |
|
47 |
2 1 46 3 4
|
scmatscmide |
|
48 |
43 45 47
|
syl2an |
|
49 |
|
eqid |
|
50 |
49
|
iftruei |
|
51 |
48 50
|
eqtrdi |
|
52 |
13
|
anim2i |
|
53 |
|
df-3an |
|
54 |
52 53
|
sylibr |
|
55 |
2 1 46 3 4
|
scmatscmide |
|
56 |
54 45 55
|
syl2an |
|
57 |
49
|
iftruei |
|
58 |
56 57
|
eqtrdi |
|
59 |
51 58
|
eqeq12d |
|
60 |
59
|
anbi2d |
|
61 |
35 40 60
|
3bitrd |
|
62 |
61
|
ralbidva |
|
63 |
62
|
3adantl2 |
|
64 |
|
r19.26 |
|
65 |
|
rspn0 |
|
66 |
65
|
3ad2ant2 |
|
67 |
66
|
adantr |
|
68 |
67
|
com12 |
|
69 |
64 68
|
simplbiim |
|
70 |
69
|
com12 |
|
71 |
63 70
|
sylbid |
|
72 |
31 71
|
sylbid |
|
73 |
17 72
|
sylbid |
|
74 |
73
|
ralrimivva |
|
75 |
|
dff13 |
|
76 |
8 74 75
|
sylanbrc |
|