Metamath Proof Explorer


Theorem scmatf1o

Description: There is a bijection between a ring and any ring of scalar matrices with positive dimension over this ring. (Contributed by AV, 26-Dec-2019)

Ref Expression
Hypotheses scmatrhmval.k K = Base R
scmatrhmval.a A = N Mat R
scmatrhmval.o 1 ˙ = 1 A
scmatrhmval.t ˙ = A
scmatrhmval.f F = x K x ˙ 1 ˙
scmatrhmval.c C = N ScMat R
Assertion scmatf1o N Fin N R Ring F : K 1-1 onto C

Proof

Step Hyp Ref Expression
1 scmatrhmval.k K = Base R
2 scmatrhmval.a A = N Mat R
3 scmatrhmval.o 1 ˙ = 1 A
4 scmatrhmval.t ˙ = A
5 scmatrhmval.f F = x K x ˙ 1 ˙
6 scmatrhmval.c C = N ScMat R
7 1 2 3 4 5 6 scmatf1 N Fin N R Ring F : K 1-1 C
8 1 2 3 4 5 6 scmatfo N Fin R Ring F : K onto C
9 8 3adant2 N Fin N R Ring F : K onto C
10 df-f1o F : K 1-1 onto C F : K 1-1 C F : K onto C
11 7 9 10 sylanbrc N Fin N R Ring F : K 1-1 onto C