Metamath Proof Explorer


Theorem scmatfo

Description: There is a function from a ring onto any ring of scalar matrices over this ring. (Contributed by AV, 26-Dec-2019)

Ref Expression
Hypotheses scmatrhmval.k K = Base R
scmatrhmval.a A = N Mat R
scmatrhmval.o 1 ˙ = 1 A
scmatrhmval.t ˙ = A
scmatrhmval.f F = x K x ˙ 1 ˙
scmatrhmval.c C = N ScMat R
Assertion scmatfo N Fin R Ring F : K onto C

Proof

Step Hyp Ref Expression
1 scmatrhmval.k K = Base R
2 scmatrhmval.a A = N Mat R
3 scmatrhmval.o 1 ˙ = 1 A
4 scmatrhmval.t ˙ = A
5 scmatrhmval.f F = x K x ˙ 1 ˙
6 scmatrhmval.c C = N ScMat R
7 1 2 3 4 5 6 scmatf N Fin R Ring F : K C
8 eqid Base A = Base A
9 1 2 8 3 4 6 scmatscmid N Fin R Ring y C c K y = c ˙ 1 ˙
10 9 3expa N Fin R Ring y C c K y = c ˙ 1 ˙
11 1 2 3 4 5 scmatrhmval R Ring c K F c = c ˙ 1 ˙
12 11 adantll N Fin R Ring c K F c = c ˙ 1 ˙
13 12 eqcomd N Fin R Ring c K c ˙ 1 ˙ = F c
14 13 eqeq2d N Fin R Ring c K y = c ˙ 1 ˙ y = F c
15 14 biimpd N Fin R Ring c K y = c ˙ 1 ˙ y = F c
16 15 reximdva N Fin R Ring c K y = c ˙ 1 ˙ c K y = F c
17 16 adantr N Fin R Ring y C c K y = c ˙ 1 ˙ c K y = F c
18 10 17 mpd N Fin R Ring y C c K y = F c
19 18 ralrimiva N Fin R Ring y C c K y = F c
20 dffo3 F : K onto C F : K C y C c K y = F c
21 7 19 20 sylanbrc N Fin R Ring F : K onto C