Metamath Proof Explorer


Theorem scmatlss

Description: The set of scalar matrices is a linear subspace of the matrix algebra. (Contributed by AV, 25-Dec-2019)

Ref Expression
Hypotheses scmatlss.a A = N Mat R
scmatlss.s S = N ScMat R
Assertion scmatlss N Fin R Ring S LSubSp A

Proof

Step Hyp Ref Expression
1 scmatlss.a A = N Mat R
2 scmatlss.s S = N ScMat R
3 1 matsca2 N Fin R Ring R = Scalar A
4 eqidd N Fin R Ring Base R = Base R
5 eqidd N Fin R Ring Base A = Base A
6 eqidd N Fin R Ring + A = + A
7 eqidd N Fin R Ring A = A
8 eqidd N Fin R Ring LSubSp A = LSubSp A
9 eqid Base R = Base R
10 eqid Base A = Base A
11 eqid 1 A = 1 A
12 eqid A = A
13 9 1 10 11 12 2 scmatval N Fin R Ring S = m Base A | c Base R m = c A 1 A
14 ssrab2 m Base A | c Base R m = c A 1 A Base A
15 13 14 eqsstrdi N Fin R Ring S Base A
16 eqid 0 R = 0 R
17 1 10 9 16 2 scmatid N Fin R Ring 1 A S
18 17 ne0d N Fin R Ring S
19 9 1 2 12 smatvscl N Fin R Ring a Base R x S a A x S
20 19 3adantr3 N Fin R Ring a Base R x S y S a A x S
21 simpr3 N Fin R Ring a Base R x S y S y S
22 20 21 jca N Fin R Ring a Base R x S y S a A x S y S
23 1 10 9 16 2 scmataddcl N Fin R Ring a A x S y S a A x + A y S
24 22 23 syldan N Fin R Ring a Base R x S y S a A x + A y S
25 3 4 5 6 7 8 15 18 24 islssd N Fin R Ring S LSubSp A