Metamath Proof Explorer


Theorem scmatmats

Description: The set of an N x N scalar matrices over the ring R expressed as a subset of N x N matrices over the ring R with certain properties for their entries. (Contributed by AV, 31-Oct-2019) (Revised by AV, 19-Dec-2019)

Ref Expression
Hypotheses scmatmat.a A = N Mat R
scmatmat.b B = Base A
scmatmat.s S = N ScMat R
scmate.k K = Base R
scmate.0 0 ˙ = 0 R
Assertion scmatmats N Fin R Ring S = m B | c K i N j N i m j = if i = j c 0 ˙

Proof

Step Hyp Ref Expression
1 scmatmat.a A = N Mat R
2 scmatmat.b B = Base A
3 scmatmat.s S = N ScMat R
4 scmate.k K = Base R
5 scmate.0 0 ˙ = 0 R
6 eqid 1 A = 1 A
7 eqid A = A
8 4 1 2 6 7 3 scmatval N Fin R Ring S = m B | c K m = c A 1 A
9 simpr N Fin R Ring m B m B
10 9 adantr N Fin R Ring m B c K m B
11 simpll N Fin R Ring m B c K N Fin R Ring
12 1 matring N Fin R Ring A Ring
13 2 6 ringidcl A Ring 1 A B
14 12 13 syl N Fin R Ring 1 A B
15 14 adantr N Fin R Ring m B 1 A B
16 15 anim1ci N Fin R Ring m B c K c K 1 A B
17 4 1 2 7 matvscl N Fin R Ring c K 1 A B c A 1 A B
18 11 16 17 syl2anc N Fin R Ring m B c K c A 1 A B
19 1 2 eqmat m B c A 1 A B m = c A 1 A i N j N i m j = i c A 1 A j
20 10 18 19 syl2anc N Fin R Ring m B c K m = c A 1 A i N j N i m j = i c A 1 A j
21 simplll N Fin R Ring m B c K N Fin
22 simpllr N Fin R Ring m B c K R Ring
23 simpr N Fin R Ring m B c K c K
24 21 22 23 3jca N Fin R Ring m B c K N Fin R Ring c K
25 1 4 5 6 7 scmatscmide N Fin R Ring c K i N j N i c A 1 A j = if i = j c 0 ˙
26 24 25 sylan N Fin R Ring m B c K i N j N i c A 1 A j = if i = j c 0 ˙
27 26 eqeq2d N Fin R Ring m B c K i N j N i m j = i c A 1 A j i m j = if i = j c 0 ˙
28 27 2ralbidva N Fin R Ring m B c K i N j N i m j = i c A 1 A j i N j N i m j = if i = j c 0 ˙
29 20 28 bitrd N Fin R Ring m B c K m = c A 1 A i N j N i m j = if i = j c 0 ˙
30 29 rexbidva N Fin R Ring m B c K m = c A 1 A c K i N j N i m j = if i = j c 0 ˙
31 30 rabbidva N Fin R Ring m B | c K m = c A 1 A = m B | c K i N j N i m j = if i = j c 0 ˙
32 8 31 eqtrd N Fin R Ring S = m B | c K i N j N i m j = if i = j c 0 ˙