Metamath Proof Explorer


Theorem scmatmulcl

Description: The product of two scalar matrices is a scalar matrix. (Contributed by AV, 21-Aug-2019) (Revised by AV, 19-Dec-2019)

Ref Expression
Hypotheses scmatid.a A = N Mat R
scmatid.b B = Base A
scmatid.e E = Base R
scmatid.0 0 ˙ = 0 R
scmatid.s S = N ScMat R
Assertion scmatmulcl N Fin R Ring X S Y S X A Y S

Proof

Step Hyp Ref Expression
1 scmatid.a A = N Mat R
2 scmatid.b B = Base A
3 scmatid.e E = Base R
4 scmatid.0 0 ˙ = 0 R
5 scmatid.s S = N ScMat R
6 eqid 1 A = 1 A
7 eqid A = A
8 3 1 2 6 7 5 scmatel N Fin R Ring X S X B c E X = c A 1 A
9 3 1 2 6 7 5 scmatel N Fin R Ring Y S Y B d E Y = d A 1 A
10 oveq12 X = c A 1 A Y = d A 1 A X A Y = c A 1 A A d A 1 A
11 10 adantll N Fin R Ring Y B d E X B c E X = c A 1 A Y = d A 1 A X A Y = c A 1 A A d A 1 A
12 simp-4l N Fin R Ring Y B d E X B c E N Fin R Ring
13 simplr N Fin R Ring Y B d E X B d E
14 13 anim1ci N Fin R Ring Y B d E X B c E c E d E
15 eqid R = R
16 eqid A = A
17 1 3 4 6 7 15 16 scmatscmiddistr N Fin R Ring c E d E c A 1 A A d A 1 A = c R d A 1 A
18 12 14 17 syl2anc N Fin R Ring Y B d E X B c E c A 1 A A d A 1 A = c R d A 1 A
19 simpl N Fin R Ring d E c E N Fin R Ring
20 simplr N Fin R Ring d E c E R Ring
21 simprr N Fin R Ring d E c E c E
22 simpl d E c E d E
23 22 adantl N Fin R Ring d E c E d E
24 3 15 ringcl R Ring c E d E c R d E
25 20 21 23 24 syl3anc N Fin R Ring d E c E c R d E
26 1 matring N Fin R Ring A Ring
27 2 6 ringidcl A Ring 1 A B
28 26 27 syl N Fin R Ring 1 A B
29 28 adantr N Fin R Ring d E c E 1 A B
30 3 1 2 7 matvscl N Fin R Ring c R d E 1 A B c R d A 1 A B
31 19 25 29 30 syl12anc N Fin R Ring d E c E c R d A 1 A B
32 oveq1 e = c R d e A 1 A = c R d A 1 A
33 32 eqeq2d e = c R d c R d A 1 A = e A 1 A c R d A 1 A = c R d A 1 A
34 33 adantl N Fin R Ring d E c E e = c R d c R d A 1 A = e A 1 A c R d A 1 A = c R d A 1 A
35 eqidd N Fin R Ring d E c E c R d A 1 A = c R d A 1 A
36 25 34 35 rspcedvd N Fin R Ring d E c E e E c R d A 1 A = e A 1 A
37 3 1 2 6 7 5 scmatel N Fin R Ring c R d A 1 A S c R d A 1 A B e E c R d A 1 A = e A 1 A
38 37 adantr N Fin R Ring d E c E c R d A 1 A S c R d A 1 A B e E c R d A 1 A = e A 1 A
39 31 36 38 mpbir2and N Fin R Ring d E c E c R d A 1 A S
40 39 exp32 N Fin R Ring d E c E c R d A 1 A S
41 40 adantr N Fin R Ring Y B d E c E c R d A 1 A S
42 41 imp N Fin R Ring Y B d E c E c R d A 1 A S
43 42 adantr N Fin R Ring Y B d E X B c E c R d A 1 A S
44 43 imp N Fin R Ring Y B d E X B c E c R d A 1 A S
45 18 44 eqeltrd N Fin R Ring Y B d E X B c E c A 1 A A d A 1 A S
46 45 adantr N Fin R Ring Y B d E X B c E X = c A 1 A c A 1 A A d A 1 A S
47 46 adantr N Fin R Ring Y B d E X B c E X = c A 1 A Y = d A 1 A c A 1 A A d A 1 A S
48 11 47 eqeltrd N Fin R Ring Y B d E X B c E X = c A 1 A Y = d A 1 A X A Y S
49 48 exp31 N Fin R Ring Y B d E X B c E X = c A 1 A Y = d A 1 A X A Y S
50 49 rexlimdva N Fin R Ring Y B d E X B c E X = c A 1 A Y = d A 1 A X A Y S
51 50 expimpd N Fin R Ring Y B d E X B c E X = c A 1 A Y = d A 1 A X A Y S
52 51 com23 N Fin R Ring Y B d E Y = d A 1 A X B c E X = c A 1 A X A Y S
53 52 rexlimdva N Fin R Ring Y B d E Y = d A 1 A X B c E X = c A 1 A X A Y S
54 53 expimpd N Fin R Ring Y B d E Y = d A 1 A X B c E X = c A 1 A X A Y S
55 9 54 sylbid N Fin R Ring Y S X B c E X = c A 1 A X A Y S
56 55 com23 N Fin R Ring X B c E X = c A 1 A Y S X A Y S
57 8 56 sylbid N Fin R Ring X S Y S X A Y S
58 57 imp32 N Fin R Ring X S Y S X A Y S