Step |
Hyp |
Ref |
Expression |
1 |
|
scmatid.a |
|
2 |
|
scmatid.b |
|
3 |
|
scmatid.e |
|
4 |
|
scmatid.0 |
|
5 |
|
scmatid.s |
|
6 |
|
eqid |
|
7 |
|
eqid |
|
8 |
3 1 2 6 7 5
|
scmatel |
|
9 |
3 1 2 6 7 5
|
scmatel |
|
10 |
|
oveq12 |
|
11 |
10
|
adantll |
|
12 |
|
simp-4l |
|
13 |
|
simplr |
|
14 |
13
|
anim1ci |
|
15 |
|
eqid |
|
16 |
|
eqid |
|
17 |
1 3 4 6 7 15 16
|
scmatscmiddistr |
|
18 |
12 14 17
|
syl2anc |
|
19 |
|
simpl |
|
20 |
|
simplr |
|
21 |
|
simprr |
|
22 |
|
simpl |
|
23 |
22
|
adantl |
|
24 |
3 15
|
ringcl |
|
25 |
20 21 23 24
|
syl3anc |
|
26 |
1
|
matring |
|
27 |
2 6
|
ringidcl |
|
28 |
26 27
|
syl |
|
29 |
28
|
adantr |
|
30 |
3 1 2 7
|
matvscl |
|
31 |
19 25 29 30
|
syl12anc |
|
32 |
|
oveq1 |
|
33 |
32
|
eqeq2d |
|
34 |
33
|
adantl |
|
35 |
|
eqidd |
|
36 |
25 34 35
|
rspcedvd |
|
37 |
3 1 2 6 7 5
|
scmatel |
|
38 |
37
|
adantr |
|
39 |
31 36 38
|
mpbir2and |
|
40 |
39
|
exp32 |
|
41 |
40
|
adantr |
|
42 |
41
|
imp |
|
43 |
42
|
adantr |
|
44 |
43
|
imp |
|
45 |
18 44
|
eqeltrd |
|
46 |
45
|
adantr |
|
47 |
46
|
adantr |
|
48 |
11 47
|
eqeltrd |
|
49 |
48
|
exp31 |
|
50 |
49
|
rexlimdva |
|
51 |
50
|
expimpd |
|
52 |
51
|
com23 |
|
53 |
52
|
rexlimdva |
|
54 |
53
|
expimpd |
|
55 |
9 54
|
sylbid |
|
56 |
55
|
com23 |
|
57 |
8 56
|
sylbid |
|
58 |
57
|
imp32 |
|