Metamath Proof Explorer


Theorem scmatrhm

Description: There is a ring homomorphism from a ring to the ring of scalar matrices over this ring. (Contributed by AV, 29-Dec-2019)

Ref Expression
Hypotheses scmatrhmval.k K = Base R
scmatrhmval.a A = N Mat R
scmatrhmval.o 1 ˙ = 1 A
scmatrhmval.t ˙ = A
scmatrhmval.f F = x K x ˙ 1 ˙
scmatrhmval.c C = N ScMat R
scmatghm.s S = A 𝑠 C
Assertion scmatrhm N Fin R Ring F R RingHom S

Proof

Step Hyp Ref Expression
1 scmatrhmval.k K = Base R
2 scmatrhmval.a A = N Mat R
3 scmatrhmval.o 1 ˙ = 1 A
4 scmatrhmval.t ˙ = A
5 scmatrhmval.f F = x K x ˙ 1 ˙
6 scmatrhmval.c C = N ScMat R
7 scmatghm.s S = A 𝑠 C
8 simpr N Fin R Ring R Ring
9 eqid Base A = Base A
10 eqid 0 R = 0 R
11 2 9 1 10 6 scmatsrng N Fin R Ring C SubRing A
12 7 subrgring C SubRing A S Ring
13 11 12 syl N Fin R Ring S Ring
14 1 2 3 4 5 6 7 scmatghm N Fin R Ring F R GrpHom S
15 eqid mulGrp R = mulGrp R
16 eqid mulGrp S = mulGrp S
17 1 2 3 4 5 6 7 15 16 scmatmhm N Fin R Ring F mulGrp R MndHom mulGrp S
18 14 17 jca N Fin R Ring F R GrpHom S F mulGrp R MndHom mulGrp S
19 15 16 isrhm F R RingHom S R Ring S Ring F R GrpHom S F mulGrp R MndHom mulGrp S
20 8 13 18 19 syl21anbrc N Fin R Ring F R RingHom S