Metamath Proof Explorer


Theorem scmatrhmval

Description: The value of the ring homomorphism F . (Contributed by AV, 22-Dec-2019)

Ref Expression
Hypotheses scmatrhmval.k K = Base R
scmatrhmval.a A = N Mat R
scmatrhmval.o 1 ˙ = 1 A
scmatrhmval.t ˙ = A
scmatrhmval.f F = x K x ˙ 1 ˙
Assertion scmatrhmval R V X K F X = X ˙ 1 ˙

Proof

Step Hyp Ref Expression
1 scmatrhmval.k K = Base R
2 scmatrhmval.a A = N Mat R
3 scmatrhmval.o 1 ˙ = 1 A
4 scmatrhmval.t ˙ = A
5 scmatrhmval.f F = x K x ˙ 1 ˙
6 oveq1 x = X x ˙ 1 ˙ = X ˙ 1 ˙
7 simpr R V X K X K
8 ovexd R V X K X ˙ 1 ˙ V
9 5 6 7 8 fvmptd3 R V X K F X = X ˙ 1 ˙