Metamath Proof Explorer


Theorem scmatric

Description: A ring is isomorphic to every ring of scalar matrices over this ring with positive dimension. (Contributed by AV, 29-Dec-2019)

Ref Expression
Hypotheses scmatric.a A = N Mat R
scmatric.c C = N ScMat R
scmatric.s S = A 𝑠 C
Assertion scmatric N Fin N R Ring R 𝑟 S

Proof

Step Hyp Ref Expression
1 scmatric.a A = N Mat R
2 scmatric.c C = N ScMat R
3 scmatric.s S = A 𝑠 C
4 eqid Base R = Base R
5 eqid 1 A = 1 A
6 eqid A = A
7 eqid x Base R x A 1 A = x Base R x A 1 A
8 4 1 5 6 7 2 3 scmatrngiso N Fin N R Ring x Base R x A 1 A R RingIso S
9 8 ne0d N Fin N R Ring R RingIso S
10 brric R 𝑟 S R RingIso S
11 9 10 sylibr N Fin N R Ring R 𝑟 S