| Step |
Hyp |
Ref |
Expression |
| 1 |
|
scmatscm.k |
|
| 2 |
|
scmatscm.a |
|
| 3 |
|
scmatscm.b |
|
| 4 |
|
scmatscm.t |
|
| 5 |
|
scmatscm.m |
|
| 6 |
|
scmatscm.c |
|
| 7 |
|
eqid |
|
| 8 |
1 2 3 7 4 6
|
scmatscmid |
|
| 9 |
8
|
3expa |
|
| 10 |
|
oveq1 |
|
| 11 |
|
simpr |
|
| 12 |
11
|
ad4antr |
|
| 13 |
|
simpl |
|
| 14 |
13
|
adantr |
|
| 15 |
2
|
matring |
|
| 16 |
3 7
|
ringidcl |
|
| 17 |
15 16
|
syl |
|
| 18 |
17
|
adantr |
|
| 19 |
18
|
anim1ci |
|
| 20 |
1 2 3 4
|
matvscl |
|
| 21 |
14 19 20
|
syl2anc |
|
| 22 |
21
|
anim1i |
|
| 23 |
22
|
adantr |
|
| 24 |
|
simpr |
|
| 25 |
2 3 5
|
matmulcell |
|
| 26 |
12 23 24 25
|
syl3anc |
|
| 27 |
13
|
anim1i |
|
| 28 |
|
df-3an |
|
| 29 |
27 28
|
sylibr |
|
| 30 |
29
|
ad3antrrr |
|
| 31 |
|
eqid |
|
| 32 |
2 1 4 31
|
matsc |
|
| 33 |
30 32
|
syl |
|
| 34 |
|
eqeq12 |
|
| 35 |
34
|
ifbid |
|
| 36 |
35
|
adantl |
|
| 37 |
|
simpl |
|
| 38 |
37
|
adantl |
|
| 39 |
38
|
adantr |
|
| 40 |
|
simpr |
|
| 41 |
|
vex |
|
| 42 |
|
fvex |
|
| 43 |
41 42
|
ifex |
|
| 44 |
43
|
a1i |
|
| 45 |
33 36 39 40 44
|
ovmpod |
|
| 46 |
45
|
oveq1d |
|
| 47 |
46
|
mpteq2dva |
|
| 48 |
47
|
oveq2d |
|
| 49 |
|
ovif |
|
| 50 |
|
simp-6r |
|
| 51 |
|
simplrr |
|
| 52 |
|
simpr |
|
| 53 |
52
|
ad2antrr |
|
| 54 |
2 1 3 40 51 53
|
matecld |
|
| 55 |
|
eqid |
|
| 56 |
1 55 31
|
ringlz |
|
| 57 |
50 54 56
|
syl2anc |
|
| 58 |
57
|
ifeq2d |
|
| 59 |
49 58
|
eqtrid |
|
| 60 |
59
|
mpteq2dva |
|
| 61 |
60
|
oveq2d |
|
| 62 |
|
ringmnd |
|
| 63 |
62
|
adantl |
|
| 64 |
63
|
ad4antr |
|
| 65 |
|
simpl |
|
| 66 |
65
|
ad4antr |
|
| 67 |
|
equcom |
|
| 68 |
|
ifbi |
|
| 69 |
67 68
|
ax-mp |
|
| 70 |
69
|
mpteq2i |
|
| 71 |
1
|
eleq2i |
|
| 72 |
71
|
biimpi |
|
| 73 |
72
|
adantl |
|
| 74 |
73
|
ad3antrrr |
|
| 75 |
|
eqid |
|
| 76 |
2 75 3 40 51 53
|
matecld |
|
| 77 |
75 55
|
ringcl |
|
| 78 |
50 74 76 77
|
syl3anc |
|
| 79 |
78
|
ralrimiva |
|
| 80 |
31 64 66 38 70 79
|
gsummpt1n0 |
|
| 81 |
48 61 80
|
3eqtrd |
|
| 82 |
|
csbov2g |
|
| 83 |
|
csbov1g |
|
| 84 |
|
csbvarg |
|
| 85 |
84
|
oveq1d |
|
| 86 |
83 85
|
eqtrd |
|
| 87 |
86
|
oveq2d |
|
| 88 |
82 87
|
eqtrd |
|
| 89 |
88
|
adantr |
|
| 90 |
89
|
adantl |
|
| 91 |
26 81 90
|
3eqtrd |
|
| 92 |
|
simpr |
|
| 93 |
92
|
anim1i |
|
| 94 |
93
|
adantr |
|
| 95 |
2 3 1 4 55
|
matvscacell |
|
| 96 |
12 94 24 95
|
syl3anc |
|
| 97 |
91 96
|
eqtr4d |
|
| 98 |
97
|
ralrimivva |
|
| 99 |
15
|
ad3antrrr |
|
| 100 |
21
|
adantr |
|
| 101 |
3 5
|
ringcl |
|
| 102 |
99 100 52 101
|
syl3anc |
|
| 103 |
13
|
ad2antrr |
|
| 104 |
1 2 3 4
|
matvscl |
|
| 105 |
103 93 104
|
syl2anc |
|
| 106 |
2 3
|
eqmat |
|
| 107 |
102 105 106
|
syl2anc |
|
| 108 |
98 107
|
mpbird |
|
| 109 |
10 108
|
sylan9eqr |
|
| 110 |
109
|
ex |
|
| 111 |
110
|
ralrimdva |
|
| 112 |
111
|
reximdva |
|
| 113 |
9 112
|
mpd |
|