Database
BASIC LINEAR ALGEBRA
Matrices
The subalgebras of diagonal and scalar matrices
scmatscmid
Metamath Proof Explorer
Description: A scalar matrix can be expressed as a multiplication of a scalar with
the identity matrix. (Contributed by AV , 30-Oct-2019) (Revised by AV , 18-Dec-2019)
Ref
Expression
Hypotheses
scmatval.k
⊢ K = Base R
scmatval.a
⊢ A = N Mat R
scmatval.b
⊢ B = Base A
scmatval.1
⊢ 1 ˙ = 1 A
scmatval.t
⊢ · ˙ = ⋅ A
scmatval.s
⊢ S = N ScMat R
Assertion
scmatscmid
⊢ N ∈ Fin ∧ R ∈ V ∧ M ∈ S → ∃ c ∈ K M = c · ˙ 1 ˙
Proof
Step
Hyp
Ref
Expression
1
scmatval.k
⊢ K = Base R
2
scmatval.a
⊢ A = N Mat R
3
scmatval.b
⊢ B = Base A
4
scmatval.1
⊢ 1 ˙ = 1 A
5
scmatval.t
⊢ · ˙ = ⋅ A
6
scmatval.s
⊢ S = N ScMat R
7
1 2 3 4 5 6
scmatel
⊢ N ∈ Fin ∧ R ∈ V → M ∈ S ↔ M ∈ B ∧ ∃ c ∈ K M = c · ˙ 1 ˙
8
7
simplbda
⊢ N ∈ Fin ∧ R ∈ V ∧ M ∈ S → ∃ c ∈ K M = c · ˙ 1 ˙
9
8
3impa
⊢ N ∈ Fin ∧ R ∈ V ∧ M ∈ S → ∃ c ∈ K M = c · ˙ 1 ˙