Metamath Proof Explorer


Theorem scmatsgrp

Description: The set of scalar matrices is a subgroup of the matrix group/algebra. (Contributed by AV, 20-Aug-2019) (Revised by AV, 19-Dec-2019)

Ref Expression
Hypotheses scmatid.a A = N Mat R
scmatid.b B = Base A
scmatid.e E = Base R
scmatid.0 0 ˙ = 0 R
scmatid.s S = N ScMat R
Assertion scmatsgrp N Fin R Ring S SubGrp A

Proof

Step Hyp Ref Expression
1 scmatid.a A = N Mat R
2 scmatid.b B = Base A
3 scmatid.e E = Base R
4 scmatid.0 0 ˙ = 0 R
5 scmatid.s S = N ScMat R
6 1 2 5 scmatmat N Fin R Ring z S z B
7 6 ssrdv N Fin R Ring S B
8 1 2 3 4 5 scmatid N Fin R Ring 1 A S
9 8 ne0d N Fin R Ring S
10 1 2 3 4 5 scmatsubcl N Fin R Ring x S y S x - A y S
11 10 ralrimivva N Fin R Ring x S y S x - A y S
12 1 matring N Fin R Ring A Ring
13 ringgrp A Ring A Grp
14 eqid - A = - A
15 2 14 issubg4 A Grp S SubGrp A S B S x S y S x - A y S
16 12 13 15 3syl N Fin R Ring S SubGrp A S B S x S y S x - A y S
17 7 9 11 16 mpbir3and N Fin R Ring S SubGrp A