Step |
Hyp |
Ref |
Expression |
1 |
|
scmatid.a |
|
2 |
|
scmatid.b |
|
3 |
|
scmatid.e |
|
4 |
|
scmatid.0 |
|
5 |
|
scmatid.s |
|
6 |
|
scmatsgrp1.d |
|
7 |
|
scmatsgrp1.c |
|
8 |
1 2 3 4 5 6
|
scmatdmat |
|
9 |
8
|
ssrdv |
|
10 |
1 2 4 6
|
dmatsgrp |
|
11 |
10
|
ancoms |
|
12 |
7
|
subgbas |
|
13 |
12
|
eqcomd |
|
14 |
11 13
|
syl |
|
15 |
9 14
|
sseqtrrd |
|
16 |
1 2 3 4 5
|
scmatid |
|
17 |
16
|
ne0d |
|
18 |
11
|
adantr |
|
19 |
8
|
com12 |
|
20 |
19
|
adantr |
|
21 |
20
|
impcom |
|
22 |
1 2 3 4 5 6
|
scmatdmat |
|
23 |
22
|
a1d |
|
24 |
23
|
imp32 |
|
25 |
|
eqid |
|
26 |
|
eqid |
|
27 |
25 7 26
|
subgsub |
|
28 |
27
|
eqcomd |
|
29 |
18 21 24 28
|
syl3anc |
|
30 |
1 2 3 4 5
|
scmatsubcl |
|
31 |
29 30
|
eqeltrd |
|
32 |
31
|
ralrimivva |
|
33 |
1 2 4 6
|
dmatsrng |
|
34 |
33
|
ancoms |
|
35 |
7
|
subrgring |
|
36 |
34 35
|
syl |
|
37 |
|
ringgrp |
|
38 |
|
eqid |
|
39 |
38 26
|
issubg4 |
|
40 |
36 37 39
|
3syl |
|
41 |
15 17 32 40
|
mpbir3and |
|