Metamath Proof Explorer


Theorem scmatsgrp1

Description: The set of scalar matrices is a subgroup of the group/ring of diagonal matrices. (Contributed by AV, 21-Aug-2019)

Ref Expression
Hypotheses scmatid.a A = N Mat R
scmatid.b B = Base A
scmatid.e E = Base R
scmatid.0 0 ˙ = 0 R
scmatid.s S = N ScMat R
scmatsgrp1.d D = N DMat R
scmatsgrp1.c C = A 𝑠 D
Assertion scmatsgrp1 N Fin R Ring S SubGrp C

Proof

Step Hyp Ref Expression
1 scmatid.a A = N Mat R
2 scmatid.b B = Base A
3 scmatid.e E = Base R
4 scmatid.0 0 ˙ = 0 R
5 scmatid.s S = N ScMat R
6 scmatsgrp1.d D = N DMat R
7 scmatsgrp1.c C = A 𝑠 D
8 1 2 3 4 5 6 scmatdmat N Fin R Ring x S x D
9 8 ssrdv N Fin R Ring S D
10 1 2 4 6 dmatsgrp R Ring N Fin D SubGrp A
11 10 ancoms N Fin R Ring D SubGrp A
12 7 subgbas D SubGrp A D = Base C
13 12 eqcomd D SubGrp A Base C = D
14 11 13 syl N Fin R Ring Base C = D
15 9 14 sseqtrrd N Fin R Ring S Base C
16 1 2 3 4 5 scmatid N Fin R Ring 1 A S
17 16 ne0d N Fin R Ring S
18 11 adantr N Fin R Ring x S y S D SubGrp A
19 8 com12 x S N Fin R Ring x D
20 19 adantr x S y S N Fin R Ring x D
21 20 impcom N Fin R Ring x S y S x D
22 1 2 3 4 5 6 scmatdmat N Fin R Ring y S y D
23 22 a1d N Fin R Ring x S y S y D
24 23 imp32 N Fin R Ring x S y S y D
25 eqid - A = - A
26 eqid - C = - C
27 25 7 26 subgsub D SubGrp A x D y D x - A y = x - C y
28 27 eqcomd D SubGrp A x D y D x - C y = x - A y
29 18 21 24 28 syl3anc N Fin R Ring x S y S x - C y = x - A y
30 1 2 3 4 5 scmatsubcl N Fin R Ring x S y S x - A y S
31 29 30 eqeltrd N Fin R Ring x S y S x - C y S
32 31 ralrimivva N Fin R Ring x S y S x - C y S
33 1 2 4 6 dmatsrng R Ring N Fin D SubRing A
34 33 ancoms N Fin R Ring D SubRing A
35 7 subrgring D SubRing A C Ring
36 34 35 syl N Fin R Ring C Ring
37 ringgrp C Ring C Grp
38 eqid Base C = Base C
39 38 26 issubg4 C Grp S SubGrp C S Base C S x S y S x - C y S
40 36 37 39 3syl N Fin R Ring S SubGrp C S Base C S x S y S x - C y S
41 15 17 32 40 mpbir3and N Fin R Ring S SubGrp C