Metamath Proof Explorer


Theorem scmatsrng

Description: The set of scalar matrices is a subring of the matrix ring/algebra. (Contributed by AV, 21-Aug-2019) (Revised by AV, 19-Dec-2019)

Ref Expression
Hypotheses scmatid.a A=NMatR
scmatid.b B=BaseA
scmatid.e E=BaseR
scmatid.0 0˙=0R
scmatid.s S=NScMatR
Assertion scmatsrng NFinRRingSSubRingA

Proof

Step Hyp Ref Expression
1 scmatid.a A=NMatR
2 scmatid.b B=BaseA
3 scmatid.e E=BaseR
4 scmatid.0 0˙=0R
5 scmatid.s S=NScMatR
6 1 2 3 4 5 scmatsgrp NFinRRingSSubGrpA
7 1 2 3 4 5 scmatid NFinRRing1AS
8 1 2 3 4 5 scmatmulcl NFinRRingxSySxAyS
9 8 ralrimivva NFinRRingxSySxAyS
10 1 matring NFinRRingARing
11 eqid 1A=1A
12 eqid A=A
13 2 11 12 issubrg2 ARingSSubRingASSubGrpA1ASxSySxAyS
14 10 13 syl NFinRRingSSubRingASSubGrpA1ASxSySxAyS
15 6 7 9 14 mpbir3and NFinRRingSSubRingA