Metamath Proof Explorer


Theorem scmatsrng

Description: The set of scalar matrices is a subring of the matrix ring/algebra. (Contributed by AV, 21-Aug-2019) (Revised by AV, 19-Dec-2019)

Ref Expression
Hypotheses scmatid.a A = N Mat R
scmatid.b B = Base A
scmatid.e E = Base R
scmatid.0 0 ˙ = 0 R
scmatid.s S = N ScMat R
Assertion scmatsrng N Fin R Ring S SubRing A

Proof

Step Hyp Ref Expression
1 scmatid.a A = N Mat R
2 scmatid.b B = Base A
3 scmatid.e E = Base R
4 scmatid.0 0 ˙ = 0 R
5 scmatid.s S = N ScMat R
6 1 2 3 4 5 scmatsgrp N Fin R Ring S SubGrp A
7 1 2 3 4 5 scmatid N Fin R Ring 1 A S
8 1 2 3 4 5 scmatmulcl N Fin R Ring x S y S x A y S
9 8 ralrimivva N Fin R Ring x S y S x A y S
10 1 matring N Fin R Ring A Ring
11 eqid 1 A = 1 A
12 eqid A = A
13 2 11 12 issubrg2 A Ring S SubRing A S SubGrp A 1 A S x S y S x A y S
14 10 13 syl N Fin R Ring S SubRing A S SubGrp A 1 A S x S y S x A y S
15 6 7 9 14 mpbir3and N Fin R Ring S SubRing A