Metamath Proof Explorer


Theorem scmatsrng1

Description: The set of scalar matrices is a subring of the ring of diagonal matrices. (Contributed by AV, 21-Aug-2019)

Ref Expression
Hypotheses scmatid.a A = N Mat R
scmatid.b B = Base A
scmatid.e E = Base R
scmatid.0 0 ˙ = 0 R
scmatid.s S = N ScMat R
scmatsgrp1.d D = N DMat R
scmatsgrp1.c C = A 𝑠 D
Assertion scmatsrng1 N Fin R Ring S SubRing C

Proof

Step Hyp Ref Expression
1 scmatid.a A = N Mat R
2 scmatid.b B = Base A
3 scmatid.e E = Base R
4 scmatid.0 0 ˙ = 0 R
5 scmatid.s S = N ScMat R
6 scmatsgrp1.d D = N DMat R
7 scmatsgrp1.c C = A 𝑠 D
8 1 2 3 4 5 6 7 scmatsgrp1 N Fin R Ring S SubGrp C
9 1 2 4 6 dmatsrng R Ring N Fin D SubRing A
10 9 ancoms N Fin R Ring D SubRing A
11 eqid 1 A = 1 A
12 7 11 subrg1 D SubRing A 1 A = 1 C
13 10 12 syl N Fin R Ring 1 A = 1 C
14 13 eqcomd N Fin R Ring 1 C = 1 A
15 1 2 3 4 5 scmatid N Fin R Ring 1 A S
16 14 15 eqeltrd N Fin R Ring 1 C S
17 eqid A = A
18 7 17 ressmulr D SubRing A A = C
19 10 18 syl N Fin R Ring A = C
20 19 eqcomd N Fin R Ring C = A
21 20 oveqdr N Fin R Ring x S y S x C y = x A y
22 1 2 3 4 5 scmatmulcl N Fin R Ring x S y S x A y S
23 21 22 eqeltrd N Fin R Ring x S y S x C y S
24 23 ralrimivva N Fin R Ring x S y S x C y S
25 7 subrgring D SubRing A C Ring
26 eqid Base C = Base C
27 eqid 1 C = 1 C
28 eqid C = C
29 26 27 28 issubrg2 C Ring S SubRing C S SubGrp C 1 C S x S y S x C y S
30 10 25 29 3syl N Fin R Ring S SubRing C S SubGrp C 1 C S x S y S x C y S
31 8 16 24 30 mpbir3and N Fin R Ring S SubRing C