Metamath Proof Explorer


Theorem scmatstrbas

Description: The set of scalar matrices is the base set of the ring of corresponding scalar matrices. (Contributed by AV, 26-Dec-2019)

Ref Expression
Hypotheses scmatstrbas.a A = N Mat R
scmatstrbas.c C = N ScMat R
scmatstrbas.s S = A 𝑠 C
Assertion scmatstrbas N Fin R Ring Base S = C

Proof

Step Hyp Ref Expression
1 scmatstrbas.a A = N Mat R
2 scmatstrbas.c C = N ScMat R
3 scmatstrbas.s S = A 𝑠 C
4 eqid Base A = Base A
5 eqid Base R = Base R
6 eqid 0 R = 0 R
7 1 4 5 6 2 scmatsrng N Fin R Ring C SubRing A
8 3 subrgbas C SubRing A C = Base S
9 8 eqcomd C SubRing A Base S = C
10 7 9 syl N Fin R Ring Base S = C