| Step |
Hyp |
Ref |
Expression |
| 1 |
|
scmatid.a |
|
| 2 |
|
scmatid.b |
|
| 3 |
|
scmatid.e |
|
| 4 |
|
scmatid.0 |
|
| 5 |
|
scmatid.s |
|
| 6 |
|
eqid |
|
| 7 |
|
eqid |
|
| 8 |
3 1 2 6 7 5
|
scmatscmid |
|
| 9 |
8
|
3expa |
|
| 10 |
9
|
adantrr |
|
| 11 |
3 1 2 6 7 5
|
scmatscmid |
|
| 12 |
11
|
3expia |
|
| 13 |
|
oveq12 |
|
| 14 |
13
|
adantl |
|
| 15 |
|
eqid |
|
| 16 |
|
eqid |
|
| 17 |
|
eqid |
|
| 18 |
|
eqid |
|
| 19 |
1
|
matlmod |
|
| 20 |
19
|
ad2antrr |
|
| 21 |
1
|
matsca2 |
|
| 22 |
21
|
fveq2d |
|
| 23 |
3 22
|
eqtrid |
|
| 24 |
23
|
eleq2d |
|
| 25 |
24
|
biimpd |
|
| 26 |
25
|
adantr |
|
| 27 |
26
|
imp |
|
| 28 |
23
|
eleq2d |
|
| 29 |
28
|
biimpa |
|
| 30 |
29
|
adantr |
|
| 31 |
1
|
matring |
|
| 32 |
2 6
|
ringidcl |
|
| 33 |
31 32
|
syl |
|
| 34 |
33
|
ad2antrr |
|
| 35 |
2 7 15 16 17 18 20 27 30 34
|
lmodsubdir |
|
| 36 |
35
|
eqcomd |
|
| 37 |
|
simpll |
|
| 38 |
21
|
eqcomd |
|
| 39 |
38
|
ad2antrr |
|
| 40 |
39
|
fveq2d |
|
| 41 |
40
|
oveqd |
|
| 42 |
|
ringgrp |
|
| 43 |
42
|
adantl |
|
| 44 |
43
|
ad2antrr |
|
| 45 |
|
simpr |
|
| 46 |
|
simplr |
|
| 47 |
|
eqid |
|
| 48 |
3 47
|
grpsubcl |
|
| 49 |
44 45 46 48
|
syl3anc |
|
| 50 |
41 49
|
eqeltrd |
|
| 51 |
3 1 2 7
|
matvscl |
|
| 52 |
37 50 34 51
|
syl12anc |
|
| 53 |
|
oveq1 |
|
| 54 |
53
|
eqeq2d |
|
| 55 |
54
|
adantl |
|
| 56 |
|
eqidd |
|
| 57 |
50 55 56
|
rspcedvd |
|
| 58 |
3 1 2 6 7 5
|
scmatel |
|
| 59 |
58
|
ad2antrr |
|
| 60 |
52 57 59
|
mpbir2and |
|
| 61 |
36 60
|
eqeltrd |
|
| 62 |
61
|
adantr |
|
| 63 |
14 62
|
eqeltrd |
|
| 64 |
63
|
exp32 |
|
| 65 |
64
|
rexlimdva |
|
| 66 |
65
|
com23 |
|
| 67 |
66
|
rexlimdva |
|
| 68 |
12 67
|
syldc |
|
| 69 |
68
|
adantl |
|
| 70 |
69
|
impcom |
|
| 71 |
10 70
|
mpd |
|