| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rabeq |
|
| 2 |
|
rab0 |
|
| 3 |
1 2
|
eqtrdi |
|
| 4 |
|
n0 |
|
| 5 |
|
nfre1 |
|
| 6 |
|
eqid |
|
| 7 |
|
rspe |
|
| 8 |
6 7
|
mpan2 |
|
| 9 |
5 8
|
exlimi |
|
| 10 |
4 9
|
sylbi |
|
| 11 |
|
fvex |
|
| 12 |
|
eqeq1 |
|
| 13 |
12
|
anbi2d |
|
| 14 |
11 13
|
spcev |
|
| 15 |
14
|
eximi |
|
| 16 |
|
excom |
|
| 17 |
15 16
|
sylibr |
|
| 18 |
|
df-rex |
|
| 19 |
|
df-rex |
|
| 20 |
19
|
exbii |
|
| 21 |
17 18 20
|
3imtr4i |
|
| 22 |
10 21
|
syl |
|
| 23 |
|
abn0 |
|
| 24 |
22 23
|
sylibr |
|
| 25 |
11
|
dfiin2 |
|
| 26 |
|
rankon |
|
| 27 |
|
eleq1 |
|
| 28 |
26 27
|
mpbiri |
|
| 29 |
28
|
rexlimivw |
|
| 30 |
29
|
abssi |
|
| 31 |
|
onint |
|
| 32 |
30 31
|
mpan |
|
| 33 |
25 32
|
eqeltrid |
|
| 34 |
|
nfii1 |
|
| 35 |
34
|
nfeq2 |
|
| 36 |
|
eqeq1 |
|
| 37 |
35 36
|
rexbid |
|
| 38 |
37
|
elabg |
|
| 39 |
38
|
ibi |
|
| 40 |
|
ssid |
|
| 41 |
|
fveq2 |
|
| 42 |
41
|
sseq1d |
|
| 43 |
42
|
rspcev |
|
| 44 |
40 43
|
mpan2 |
|
| 45 |
|
iinss |
|
| 46 |
44 45
|
syl |
|
| 47 |
|
sseq1 |
|
| 48 |
46 47
|
imbitrid |
|
| 49 |
48
|
ralrimiv |
|
| 50 |
49
|
reximi |
|
| 51 |
24 33 39 50
|
4syl |
|
| 52 |
|
rabn0 |
|
| 53 |
51 52
|
sylibr |
|
| 54 |
53
|
necon4i |
|
| 55 |
3 54
|
impbii |
|