Metamath Proof Explorer


Theorem scottex

Description: Scott's trick collects all sets that have a certain property and are of the smallest possible rank. This theorem shows that the resulting collection, expressed as in Equation 9.3 of Jech p. 72, is a set. (Contributed by NM, 13-Oct-2003)

Ref Expression
Assertion scottex x A | y A rank x rank y V

Proof

Step Hyp Ref Expression
1 0ex V
2 eleq1 A = A V V
3 1 2 mpbiri A = A V
4 rabexg A V x A | y A rank x rank y V
5 3 4 syl A = x A | y A rank x rank y V
6 neq0 ¬ A = y y A
7 nfra1 y y A rank x rank y
8 nfcv _ y A
9 7 8 nfrabw _ y x A | y A rank x rank y
10 9 nfel1 y x A | y A rank x rank y V
11 rsp y A rank x rank y y A rank x rank y
12 11 com12 y A y A rank x rank y rank x rank y
13 12 adantr y A x A y A rank x rank y rank x rank y
14 13 ss2rabdv y A x A | y A rank x rank y x A | rank x rank y
15 rankon rank y On
16 fveq2 x = w rank x = rank w
17 16 sseq1d x = w rank x rank y rank w rank y
18 17 elrab w x A | rank x rank y w A rank w rank y
19 18 simprbi w x A | rank x rank y rank w rank y
20 19 rgen w x A | rank x rank y rank w rank y
21 sseq2 z = rank y rank w z rank w rank y
22 21 ralbidv z = rank y w x A | rank x rank y rank w z w x A | rank x rank y rank w rank y
23 22 rspcev rank y On w x A | rank x rank y rank w rank y z On w x A | rank x rank y rank w z
24 15 20 23 mp2an z On w x A | rank x rank y rank w z
25 bndrank z On w x A | rank x rank y rank w z x A | rank x rank y V
26 24 25 ax-mp x A | rank x rank y V
27 26 ssex x A | y A rank x rank y x A | rank x rank y x A | y A rank x rank y V
28 14 27 syl y A x A | y A rank x rank y V
29 10 28 exlimi y y A x A | y A rank x rank y V
30 6 29 sylbi ¬ A = x A | y A rank x rank y V
31 5 30 pm2.61i x A | y A rank x rank y V