Step |
Hyp |
Ref |
Expression |
1 |
|
lencl |
|
2 |
|
elnn0uz |
|
3 |
1 2
|
sylib |
|
4 |
3
|
adantr |
|
5 |
|
eleq1 |
|
6 |
5
|
adantl |
|
7 |
4 6
|
mpbird |
|
8 |
7
|
3adant2 |
|
9 |
8
|
adantr |
|
10 |
|
fzisfzounsn |
|
11 |
9 10
|
syl |
|
12 |
11
|
rexeqdv |
|
13 |
|
rexun |
|
14 |
12 13
|
bitrdi |
|
15 |
|
fvex |
|
16 |
|
eleq1 |
|
17 |
15 16
|
mpbiri |
|
18 |
|
oveq2 |
|
19 |
18
|
eqeq2d |
|
20 |
19
|
rexsng |
|
21 |
17 20
|
syl |
|
22 |
21
|
3ad2ant3 |
|
23 |
22
|
adantr |
|
24 |
|
oveq2 |
|
25 |
24
|
3ad2ant3 |
|
26 |
|
cshwn |
|
27 |
26
|
3ad2ant1 |
|
28 |
25 27
|
eqtrd |
|
29 |
28
|
eqeq2d |
|
30 |
29
|
adantr |
|
31 |
|
cshw0 |
|
32 |
31
|
3ad2ant1 |
|
33 |
|
lennncl |
|
34 |
33
|
3adant3 |
|
35 |
|
eleq1 |
|
36 |
35
|
3ad2ant3 |
|
37 |
34 36
|
mpbird |
|
38 |
|
lbfzo0 |
|
39 |
37 38
|
sylibr |
|
40 |
|
oveq2 |
|
41 |
40
|
eqeq1d |
|
42 |
41
|
eqcoms |
|
43 |
|
eqcom |
|
44 |
42 43
|
bitrdi |
|
45 |
44
|
adantl |
|
46 |
45
|
biimpd |
|
47 |
39 46
|
rspcimedv |
|
48 |
32 47
|
mpd |
|
49 |
48
|
adantr |
|
50 |
49
|
adantr |
|
51 |
|
eqeq1 |
|
52 |
51
|
adantl |
|
53 |
52
|
rexbidv |
|
54 |
50 53
|
mpbird |
|
55 |
54
|
ex |
|
56 |
30 55
|
sylbid |
|
57 |
23 56
|
sylbid |
|
58 |
57
|
com12 |
|
59 |
58
|
jao1i |
|
60 |
59
|
com12 |
|
61 |
14 60
|
sylbid |
|
62 |
|
fzossfz |
|
63 |
|
ssrexv |
|
64 |
62 63
|
mp1i |
|
65 |
61 64
|
impbid |
|
66 |
65
|
rabbidva |
|