| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lencl |
|
| 2 |
|
elnn0uz |
|
| 3 |
1 2
|
sylib |
|
| 4 |
3
|
adantr |
|
| 5 |
|
eleq1 |
|
| 6 |
5
|
adantl |
|
| 7 |
4 6
|
mpbird |
|
| 8 |
7
|
3adant2 |
|
| 9 |
8
|
adantr |
|
| 10 |
|
fzisfzounsn |
|
| 11 |
9 10
|
syl |
|
| 12 |
11
|
rexeqdv |
|
| 13 |
|
rexun |
|
| 14 |
12 13
|
bitrdi |
|
| 15 |
|
fvex |
|
| 16 |
|
eleq1 |
|
| 17 |
15 16
|
mpbiri |
|
| 18 |
|
oveq2 |
|
| 19 |
18
|
eqeq2d |
|
| 20 |
19
|
rexsng |
|
| 21 |
17 20
|
syl |
|
| 22 |
21
|
3ad2ant3 |
|
| 23 |
22
|
adantr |
|
| 24 |
|
oveq2 |
|
| 25 |
24
|
3ad2ant3 |
|
| 26 |
|
cshwn |
|
| 27 |
26
|
3ad2ant1 |
|
| 28 |
25 27
|
eqtrd |
|
| 29 |
28
|
eqeq2d |
|
| 30 |
29
|
adantr |
|
| 31 |
|
cshw0 |
|
| 32 |
31
|
3ad2ant1 |
|
| 33 |
|
lennncl |
|
| 34 |
33
|
3adant3 |
|
| 35 |
|
eleq1 |
|
| 36 |
35
|
3ad2ant3 |
|
| 37 |
34 36
|
mpbird |
|
| 38 |
|
lbfzo0 |
|
| 39 |
37 38
|
sylibr |
|
| 40 |
|
oveq2 |
|
| 41 |
40
|
eqeq1d |
|
| 42 |
41
|
eqcoms |
|
| 43 |
|
eqcom |
|
| 44 |
42 43
|
bitrdi |
|
| 45 |
44
|
adantl |
|
| 46 |
45
|
biimpd |
|
| 47 |
39 46
|
rspcimedv |
|
| 48 |
32 47
|
mpd |
|
| 49 |
48
|
adantr |
|
| 50 |
49
|
adantr |
|
| 51 |
|
eqeq1 |
|
| 52 |
51
|
adantl |
|
| 53 |
52
|
rexbidv |
|
| 54 |
50 53
|
mpbird |
|
| 55 |
54
|
ex |
|
| 56 |
30 55
|
sylbid |
|
| 57 |
23 56
|
sylbid |
|
| 58 |
57
|
com12 |
|
| 59 |
58
|
jao1i |
|
| 60 |
59
|
com12 |
|
| 61 |
14 60
|
sylbid |
|
| 62 |
|
fzossfz |
|
| 63 |
|
ssrexv |
|
| 64 |
62 63
|
mp1i |
|
| 65 |
61 64
|
impbid |
|
| 66 |
65
|
rabbidva |
|