Metamath Proof Explorer


Theorem scutfo

Description: The surreal cut function is onto. (Contributed by Scott Fenton, 23-Aug-2024)

Ref Expression
Assertion scutfo | s : s onto No

Proof

Step Hyp Ref Expression
1 scutf | s : s No
2 lltropt Could not format ( _Left ` x ) <
3 df-br Could not format ( ( _Left ` x ) < <. ( _Left ` x ) , ( _Right ` x ) >. e. < <. ( _Left ` x ) , ( _Right ` x ) >. e. <
4 2 3 mpbi Could not format <. ( _Left ` x ) , ( _Right ` x ) >. e. <. e. <
5 lrcut Could not format ( x e. No -> ( ( _Left ` x ) |s ( _Right ` x ) ) = x ) : No typesetting found for |- ( x e. No -> ( ( _Left ` x ) |s ( _Right ` x ) ) = x ) with typecode |-
6 5 eqcomd Could not format ( x e. No -> x = ( ( _Left ` x ) |s ( _Right ` x ) ) ) : No typesetting found for |- ( x e. No -> x = ( ( _Left ` x ) |s ( _Right ` x ) ) ) with typecode |-
7 fveq2 Could not format ( y = <. ( _Left ` x ) , ( _Right ` x ) >. -> ( |s ` y ) = ( |s ` <. ( _Left ` x ) , ( _Right ` x ) >. ) ) : No typesetting found for |- ( y = <. ( _Left ` x ) , ( _Right ` x ) >. -> ( |s ` y ) = ( |s ` <. ( _Left ` x ) , ( _Right ` x ) >. ) ) with typecode |-
8 df-ov Could not format ( ( _Left ` x ) |s ( _Right ` x ) ) = ( |s ` <. ( _Left ` x ) , ( _Right ` x ) >. ) : No typesetting found for |- ( ( _Left ` x ) |s ( _Right ` x ) ) = ( |s ` <. ( _Left ` x ) , ( _Right ` x ) >. ) with typecode |-
9 7 8 eqtr4di Could not format ( y = <. ( _Left ` x ) , ( _Right ` x ) >. -> ( |s ` y ) = ( ( _Left ` x ) |s ( _Right ` x ) ) ) : No typesetting found for |- ( y = <. ( _Left ` x ) , ( _Right ` x ) >. -> ( |s ` y ) = ( ( _Left ` x ) |s ( _Right ` x ) ) ) with typecode |-
10 9 rspceeqv Could not format ( ( <. ( _Left ` x ) , ( _Right ` x ) >. e. < E. y e. <. e. < E. y e. <
11 4 6 10 sylancr x No y s x = | s y
12 11 rgen x No y s x = | s y
13 dffo3 | s : s onto No | s : s No x No y s x = | s y
14 1 12 13 mpbir2an | s : s onto No