Metamath Proof Explorer


Theorem sdom0

Description: The empty set does not strictly dominate any set. (Contributed by NM, 26-Oct-2003)

Ref Expression
Assertion sdom0 ¬ A

Proof

Step Hyp Ref Expression
1 relsdom Rel
2 1 brrelex1i A A V
3 0domg A V A
4 2 3 syl A A
5 domnsym A ¬ A
6 5 con2i A ¬ A
7 4 6 pm2.65i ¬ A