Metamath Proof Explorer


Theorem sdomdif

Description: The difference of a set from a smaller set cannot be empty. (Contributed by Mario Carneiro, 5-Feb-2013)

Ref Expression
Assertion sdomdif A B B A

Proof

Step Hyp Ref Expression
1 relsdom Rel
2 1 brrelex1i A B A V
3 ssdif0 B A B A =
4 ssdomg A V B A B A
5 domnsym B A ¬ A B
6 4 5 syl6 A V B A ¬ A B
7 3 6 syl5bir A V B A = ¬ A B
8 2 7 syl A B B A = ¬ A B
9 8 con2d A B A B ¬ B A =
10 9 pm2.43i A B ¬ B A =
11 10 neqned A B B A