Metamath Proof Explorer


Theorem sdomdomtr

Description: Transitivity of strict dominance and dominance. Theorem 22(iii) of Suppes p. 97. (Contributed by NM, 26-Oct-2003) (Revised by Mario Carneiro, 26-Apr-2015)

Ref Expression
Assertion sdomdomtr A B B C A C

Proof

Step Hyp Ref Expression
1 sdomdom A B A B
2 domtr A B B C A C
3 1 2 sylan A B B C A C
4 simpl A B B C A B
5 simpr A B B C B C
6 ensym A C C A
7 domentr B C C A B A
8 5 6 7 syl2an A B B C A C B A
9 domnsym B A ¬ A B
10 8 9 syl A B B C A C ¬ A B
11 10 ex A B B C A C ¬ A B
12 4 11 mt2d A B B C ¬ A C
13 brsdom A C A C ¬ A C
14 3 12 13 sylanbrc A B B C A C