Metamath Proof Explorer


Theorem sdomsdomcard

Description: A set strictly dominates iff its cardinal strictly dominates. (Contributed by NM, 30-Oct-2003)

Ref Expression
Assertion sdomsdomcard A B A card B

Proof

Step Hyp Ref Expression
1 relsdom Rel
2 1 brrelex2i A B B V
3 numth3 B V B dom card
4 cardid2 B dom card card B B
5 ensym card B B B card B
6 2 3 4 5 4syl A B B card B
7 sdomentr A B B card B A card B
8 6 7 mpdan A B A card B
9 sdomsdomcardi A card B A B
10 8 9 impbii A B A card B