Metamath Proof Explorer


Theorem sdrgbas

Description: Base set of a sub-division-ring structure. (Contributed by SN, 19-Feb-2025)

Ref Expression
Hypothesis sdrgbas.b S = R 𝑠 A
Assertion sdrgbas A SubDRing R A = Base S

Proof

Step Hyp Ref Expression
1 sdrgbas.b S = R 𝑠 A
2 eqid Base R = Base R
3 2 sdrgss A SubDRing R A Base R
4 1 2 ressbas2 A Base R A = Base S
5 3 4 syl A SubDRing R A = Base S