Database
BASIC ALGEBRAIC STRUCTURES
Division rings and fields
Sub-division rings
sdrgdrng
Next ⟩
sdrgsubrg
Metamath Proof Explorer
Ascii
Unicode
Theorem
sdrgdrng
Description:
A sub-division-ring is a division ring.
(Contributed by
SN
, 19-Feb-2025)
Ref
Expression
Hypothesis
sdrgdrng.1
⊢
S
=
R
↾
𝑠
A
Assertion
sdrgdrng
⊢
A
∈
SubDRing
⁡
R
→
S
∈
DivRing
Proof
Step
Hyp
Ref
Expression
1
sdrgdrng.1
⊢
S
=
R
↾
𝑠
A
2
issdrg
⊢
A
∈
SubDRing
⁡
R
↔
R
∈
DivRing
∧
A
∈
SubRing
⁡
R
∧
R
↾
𝑠
A
∈
DivRing
3
2
simp3bi
⊢
A
∈
SubDRing
⁡
R
→
R
↾
𝑠
A
∈
DivRing
4
1
3
eqeltrid
⊢
A
∈
SubDRing
⁡
R
→
S
∈
DivRing