Metamath Proof Explorer


Theorem sdrgdvcl

Description: A sub-division-ring is closed under the ring division operation. (Contributed by Thierry Arnoux, 15-Jan-2025)

Ref Expression
Hypotheses sdrgdvcl.i × ˙ = / r R
sdrgdvcl.0 0 ˙ = 0 R
sdrgdvcl.a φ A SubDRing R
sdrgdvcl.x φ X A
sdrgdvcl.y φ Y A
sdrgdvcl.1 φ Y 0 ˙
Assertion sdrgdvcl φ X × ˙ Y A

Proof

Step Hyp Ref Expression
1 sdrgdvcl.i × ˙ = / r R
2 sdrgdvcl.0 0 ˙ = 0 R
3 sdrgdvcl.a φ A SubDRing R
4 sdrgdvcl.x φ X A
5 sdrgdvcl.y φ Y A
6 sdrgdvcl.1 φ Y 0 ˙
7 issdrg A SubDRing R R DivRing A SubRing R R 𝑠 A DivRing
8 3 7 sylib φ R DivRing A SubRing R R 𝑠 A DivRing
9 8 simp3d φ R 𝑠 A DivRing
10 9 drngringd φ R 𝑠 A Ring
11 8 simp2d φ A SubRing R
12 eqid R 𝑠 A = R 𝑠 A
13 12 subrgbas A SubRing R A = Base R 𝑠 A
14 11 13 syl φ A = Base R 𝑠 A
15 4 14 eleqtrd φ X Base R 𝑠 A
16 5 14 eleqtrd φ Y Base R 𝑠 A
17 12 2 subrg0 A SubRing R 0 ˙ = 0 R 𝑠 A
18 11 17 syl φ 0 ˙ = 0 R 𝑠 A
19 6 18 neeqtrd φ Y 0 R 𝑠 A
20 eqid Base R 𝑠 A = Base R 𝑠 A
21 eqid Unit R 𝑠 A = Unit R 𝑠 A
22 eqid 0 R 𝑠 A = 0 R 𝑠 A
23 20 21 22 drngunit R 𝑠 A DivRing Y Unit R 𝑠 A Y Base R 𝑠 A Y 0 R 𝑠 A
24 23 biimpar R 𝑠 A DivRing Y Base R 𝑠 A Y 0 R 𝑠 A Y Unit R 𝑠 A
25 9 16 19 24 syl12anc φ Y Unit R 𝑠 A
26 eqid / r R 𝑠 A = / r R 𝑠 A
27 20 21 26 dvrcl R 𝑠 A Ring X Base R 𝑠 A Y Unit R 𝑠 A X / r R 𝑠 A Y Base R 𝑠 A
28 10 15 25 27 syl3anc φ X / r R 𝑠 A Y Base R 𝑠 A
29 12 1 21 26 subrgdv A SubRing R X A Y Unit R 𝑠 A X × ˙ Y = X / r R 𝑠 A Y
30 11 4 25 29 syl3anc φ X × ˙ Y = X / r R 𝑠 A Y
31 28 30 14 3eltr4d φ X × ˙ Y A