Step |
Hyp |
Ref |
Expression |
1 |
|
sdrgdvcl.i |
|
2 |
|
sdrgdvcl.0 |
|
3 |
|
sdrgdvcl.a |
|
4 |
|
sdrgdvcl.x |
|
5 |
|
sdrgdvcl.y |
|
6 |
|
sdrgdvcl.1 |
|
7 |
|
issdrg |
|
8 |
3 7
|
sylib |
|
9 |
8
|
simp3d |
|
10 |
9
|
drngringd |
|
11 |
8
|
simp2d |
|
12 |
|
eqid |
|
13 |
12
|
subrgbas |
|
14 |
11 13
|
syl |
|
15 |
4 14
|
eleqtrd |
|
16 |
5 14
|
eleqtrd |
|
17 |
12 2
|
subrg0 |
|
18 |
11 17
|
syl |
|
19 |
6 18
|
neeqtrd |
|
20 |
|
eqid |
|
21 |
|
eqid |
|
22 |
|
eqid |
|
23 |
20 21 22
|
drngunit |
|
24 |
23
|
biimpar |
|
25 |
9 16 19 24
|
syl12anc |
|
26 |
|
eqid |
|
27 |
20 21 26
|
dvrcl |
|
28 |
10 15 25 27
|
syl3anc |
|
29 |
12 1 21 26
|
subrgdv |
|
30 |
11 4 25 29
|
syl3anc |
|
31 |
28 30 14
|
3eltr4d |
|