Metamath Proof Explorer


Theorem sdrginvcl

Description: A sub-division-ring is closed under the ring inverse operation. (Contributed by Thierry Arnoux, 15-Jan-2025)

Ref Expression
Hypotheses sdrginvcl.i I = inv r R
sdrginvcl.0 0 ˙ = 0 R
Assertion sdrginvcl A SubDRing R X A X 0 ˙ I X A

Proof

Step Hyp Ref Expression
1 sdrginvcl.i I = inv r R
2 sdrginvcl.0 0 ˙ = 0 R
3 issdrg A SubDRing R R DivRing A SubRing R R 𝑠 A DivRing
4 3 biimpi A SubDRing R R DivRing A SubRing R R 𝑠 A DivRing
5 4 3ad2ant1 A SubDRing R X A X 0 ˙ R DivRing A SubRing R R 𝑠 A DivRing
6 5 simp3d A SubDRing R X A X 0 ˙ R 𝑠 A DivRing
7 simp2 A SubDRing R X A X 0 ˙ X A
8 5 simp2d A SubDRing R X A X 0 ˙ A SubRing R
9 eqid R 𝑠 A = R 𝑠 A
10 9 subrgbas A SubRing R A = Base R 𝑠 A
11 8 10 syl A SubDRing R X A X 0 ˙ A = Base R 𝑠 A
12 7 11 eleqtrd A SubDRing R X A X 0 ˙ X Base R 𝑠 A
13 simp3 A SubDRing R X A X 0 ˙ X 0 ˙
14 9 2 subrg0 A SubRing R 0 ˙ = 0 R 𝑠 A
15 8 14 syl A SubDRing R X A X 0 ˙ 0 ˙ = 0 R 𝑠 A
16 13 15 neeqtrd A SubDRing R X A X 0 ˙ X 0 R 𝑠 A
17 eqid Base R 𝑠 A = Base R 𝑠 A
18 eqid 0 R 𝑠 A = 0 R 𝑠 A
19 eqid inv r R 𝑠 A = inv r R 𝑠 A
20 17 18 19 drnginvrcl R 𝑠 A DivRing X Base R 𝑠 A X 0 R 𝑠 A inv r R 𝑠 A X Base R 𝑠 A
21 6 12 16 20 syl3anc A SubDRing R X A X 0 ˙ inv r R 𝑠 A X Base R 𝑠 A
22 eqid Unit R 𝑠 A = Unit R 𝑠 A
23 17 22 18 drngunit R 𝑠 A DivRing X Unit R 𝑠 A X Base R 𝑠 A X 0 R 𝑠 A
24 23 biimpar R 𝑠 A DivRing X Base R 𝑠 A X 0 R 𝑠 A X Unit R 𝑠 A
25 6 12 16 24 syl12anc A SubDRing R X A X 0 ˙ X Unit R 𝑠 A
26 9 1 22 19 subrginv A SubRing R X Unit R 𝑠 A I X = inv r R 𝑠 A X
27 8 25 26 syl2anc A SubDRing R X A X 0 ˙ I X = inv r R 𝑠 A X
28 21 27 11 3eltr4d A SubDRing R X A X 0 ˙ I X A