Step |
Hyp |
Ref |
Expression |
1 |
|
sdrginvcl.i |
|
2 |
|
sdrginvcl.0 |
|
3 |
|
issdrg |
|
4 |
3
|
biimpi |
|
5 |
4
|
3ad2ant1 |
|
6 |
5
|
simp3d |
|
7 |
|
simp2 |
|
8 |
5
|
simp2d |
|
9 |
|
eqid |
|
10 |
9
|
subrgbas |
|
11 |
8 10
|
syl |
|
12 |
7 11
|
eleqtrd |
|
13 |
|
simp3 |
|
14 |
9 2
|
subrg0 |
|
15 |
8 14
|
syl |
|
16 |
13 15
|
neeqtrd |
|
17 |
|
eqid |
|
18 |
|
eqid |
|
19 |
|
eqid |
|
20 |
17 18 19
|
drnginvrcl |
|
21 |
6 12 16 20
|
syl3anc |
|
22 |
|
eqid |
|
23 |
17 22 18
|
drngunit |
|
24 |
23
|
biimpar |
|
25 |
6 12 16 24
|
syl12anc |
|
26 |
9 1 22 19
|
subrginv |
|
27 |
8 25 26
|
syl2anc |
|
28 |
21 27 11
|
3eltr4d |
|