Metamath Proof Explorer


Theorem sdrgunit

Description: A unit of a sub-division-ring is a nonzero element of the subring. (Contributed by SN, 19-Feb-2025)

Ref Expression
Hypotheses sdrgunit.s S = R 𝑠 A
sdrgunit.0 0 ˙ = 0 R
sdrgunit.u U = Unit S
Assertion sdrgunit A SubDRing R X U X A X 0 ˙

Proof

Step Hyp Ref Expression
1 sdrgunit.s S = R 𝑠 A
2 sdrgunit.0 0 ˙ = 0 R
3 sdrgunit.u U = Unit S
4 1 sdrgdrng A SubDRing R S DivRing
5 eqid Base S = Base S
6 eqid 0 S = 0 S
7 5 3 6 drngunit S DivRing X U X Base S X 0 S
8 4 7 syl A SubDRing R X U X Base S X 0 S
9 1 sdrgbas A SubDRing R A = Base S
10 9 eleq2d A SubDRing R X A X Base S
11 sdrgsubrg A SubDRing R A SubRing R
12 1 2 subrg0 A SubRing R 0 ˙ = 0 S
13 11 12 syl A SubDRing R 0 ˙ = 0 S
14 13 neeq2d A SubDRing R X 0 ˙ X 0 S
15 10 14 anbi12d A SubDRing R X A X 0 ˙ X Base S X 0 S
16 8 15 bitr4d A SubDRing R X U X A X 0 ˙