Metamath Proof Explorer


Theorem sectepi

Description: If F is a section of G , then G is an epimorphism. An epimorphism that arises from a section is also known as asplit epimorphism. (Contributed by Mario Carneiro, 3-Jan-2017)

Ref Expression
Hypotheses sectepi.b B = Base C
sectepi.e E = Epi C
sectepi.s S = Sect C
sectepi.c φ C Cat
sectepi.x φ X B
sectepi.y φ Y B
sectepi.1 φ F X S Y G
Assertion sectepi φ G Y E X

Proof

Step Hyp Ref Expression
1 sectepi.b B = Base C
2 sectepi.e E = Epi C
3 sectepi.s S = Sect C
4 sectepi.c φ C Cat
5 sectepi.x φ X B
6 sectepi.y φ Y B
7 sectepi.1 φ F X S Y G
8 eqid oppCat C = oppCat C
9 8 1 oppcbas B = Base oppCat C
10 eqid Mono oppCat C = Mono oppCat C
11 eqid Sect oppCat C = Sect oppCat C
12 8 oppccat C Cat oppCat C Cat
13 4 12 syl φ oppCat C Cat
14 1 8 4 5 6 3 11 oppcsect φ G X Sect oppCat C Y F F X S Y G
15 7 14 mpbird φ G X Sect oppCat C Y F
16 9 10 11 13 5 6 15 sectmon φ G X Mono oppCat C Y
17 8 4 10 2 oppcmon φ X Mono oppCat C Y = Y E X
18 16 17 eleqtrd φ G Y E X