Metamath Proof Explorer


Theorem sectffval

Description: Value of the section operation. (Contributed by Mario Carneiro, 2-Jan-2017) Removed redundant hypotheses. (Revised by Zhi Wang, 27-Oct-2025)

Ref Expression
Hypotheses issect.b B = Base C
issect.h H = Hom C
issect.o · ˙ = comp C
issect.i 1 ˙ = Id C
issect.s S = Sect C
issect.c φ C Cat
Assertion sectffval φ S = x B , y B f g | f x H y g y H x g x y · ˙ x f = 1 ˙ x

Proof

Step Hyp Ref Expression
1 issect.b B = Base C
2 issect.h H = Hom C
3 issect.o · ˙ = comp C
4 issect.i 1 ˙ = Id C
5 issect.s S = Sect C
6 issect.c φ C Cat
7 fveq2 c = C Base c = Base C
8 7 1 eqtr4di c = C Base c = B
9 fvexd c = C Hom c V
10 fveq2 c = C Hom c = Hom C
11 10 2 eqtr4di c = C Hom c = H
12 simpr c = C h = H h = H
13 12 oveqd c = C h = H x h y = x H y
14 13 eleq2d c = C h = H f x h y f x H y
15 12 oveqd c = C h = H y h x = y H x
16 15 eleq2d c = C h = H g y h x g y H x
17 14 16 anbi12d c = C h = H f x h y g y h x f x H y g y H x
18 simpl c = C h = H c = C
19 18 fveq2d c = C h = H comp c = comp C
20 19 3 eqtr4di c = C h = H comp c = · ˙
21 20 oveqd c = C h = H x y comp c x = x y · ˙ x
22 21 oveqd c = C h = H g x y comp c x f = g x y · ˙ x f
23 18 fveq2d c = C h = H Id c = Id C
24 23 4 eqtr4di c = C h = H Id c = 1 ˙
25 24 fveq1d c = C h = H Id c x = 1 ˙ x
26 22 25 eqeq12d c = C h = H g x y comp c x f = Id c x g x y · ˙ x f = 1 ˙ x
27 17 26 anbi12d c = C h = H f x h y g y h x g x y comp c x f = Id c x f x H y g y H x g x y · ˙ x f = 1 ˙ x
28 9 11 27 sbcied2 c = C [˙ Hom c / h]˙ f x h y g y h x g x y comp c x f = Id c x f x H y g y H x g x y · ˙ x f = 1 ˙ x
29 28 opabbidv c = C f g | [˙ Hom c / h]˙ f x h y g y h x g x y comp c x f = Id c x = f g | f x H y g y H x g x y · ˙ x f = 1 ˙ x
30 8 8 29 mpoeq123dv c = C x Base c , y Base c f g | [˙ Hom c / h]˙ f x h y g y h x g x y comp c x f = Id c x = x B , y B f g | f x H y g y H x g x y · ˙ x f = 1 ˙ x
31 df-sect Sect = c Cat x Base c , y Base c f g | [˙ Hom c / h]˙ f x h y g y h x g x y comp c x f = Id c x
32 1 fvexi B V
33 32 32 mpoex x B , y B f g | f x H y g y H x g x y · ˙ x f = 1 ˙ x V
34 30 31 33 fvmpt C Cat Sect C = x B , y B f g | f x H y g y H x g x y · ˙ x f = 1 ˙ x
35 6 34 syl φ Sect C = x B , y B f g | f x H y g y H x g x y · ˙ x f = 1 ˙ x
36 5 35 eqtrid φ S = x B , y B f g | f x H y g y H x g x y · ˙ x f = 1 ˙ x