Metamath Proof Explorer


Theorem sectffval

Description: Value of the section operation. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypotheses issect.b B = Base C
issect.h H = Hom C
issect.o · ˙ = comp C
issect.i 1 ˙ = Id C
issect.s S = Sect C
issect.c φ C Cat
issect.x φ X B
issect.y φ Y B
Assertion sectffval φ S = x B , y B f g | f x H y g y H x g x y · ˙ x f = 1 ˙ x

Proof

Step Hyp Ref Expression
1 issect.b B = Base C
2 issect.h H = Hom C
3 issect.o · ˙ = comp C
4 issect.i 1 ˙ = Id C
5 issect.s S = Sect C
6 issect.c φ C Cat
7 issect.x φ X B
8 issect.y φ Y B
9 fveq2 c = C Base c = Base C
10 9 1 syl6eqr c = C Base c = B
11 fvexd c = C Hom c V
12 fveq2 c = C Hom c = Hom C
13 12 2 syl6eqr c = C Hom c = H
14 simpr c = C h = H h = H
15 14 oveqd c = C h = H x h y = x H y
16 15 eleq2d c = C h = H f x h y f x H y
17 14 oveqd c = C h = H y h x = y H x
18 17 eleq2d c = C h = H g y h x g y H x
19 16 18 anbi12d c = C h = H f x h y g y h x f x H y g y H x
20 simpl c = C h = H c = C
21 20 fveq2d c = C h = H comp c = comp C
22 21 3 syl6eqr c = C h = H comp c = · ˙
23 22 oveqd c = C h = H x y comp c x = x y · ˙ x
24 23 oveqd c = C h = H g x y comp c x f = g x y · ˙ x f
25 20 fveq2d c = C h = H Id c = Id C
26 25 4 syl6eqr c = C h = H Id c = 1 ˙
27 26 fveq1d c = C h = H Id c x = 1 ˙ x
28 24 27 eqeq12d c = C h = H g x y comp c x f = Id c x g x y · ˙ x f = 1 ˙ x
29 19 28 anbi12d c = C h = H f x h y g y h x g x y comp c x f = Id c x f x H y g y H x g x y · ˙ x f = 1 ˙ x
30 11 13 29 sbcied2 c = C [˙ Hom c / h]˙ f x h y g y h x g x y comp c x f = Id c x f x H y g y H x g x y · ˙ x f = 1 ˙ x
31 30 opabbidv c = C f g | [˙ Hom c / h]˙ f x h y g y h x g x y comp c x f = Id c x = f g | f x H y g y H x g x y · ˙ x f = 1 ˙ x
32 10 10 31 mpoeq123dv c = C x Base c , y Base c f g | [˙ Hom c / h]˙ f x h y g y h x g x y comp c x f = Id c x = x B , y B f g | f x H y g y H x g x y · ˙ x f = 1 ˙ x
33 df-sect Sect = c Cat x Base c , y Base c f g | [˙ Hom c / h]˙ f x h y g y h x g x y comp c x f = Id c x
34 1 fvexi B V
35 34 34 mpoex x B , y B f g | f x H y g y H x g x y · ˙ x f = 1 ˙ x V
36 32 33 35 fvmpt C Cat Sect C = x B , y B f g | f x H y g y H x g x y · ˙ x f = 1 ˙ x
37 6 36 syl φ Sect C = x B , y B f g | f x H y g y H x g x y · ˙ x f = 1 ˙ x
38 5 37 syl5eq φ S = x B , y B f g | f x H y g y H x g x y · ˙ x f = 1 ˙ x