Metamath Proof Explorer


Theorem sectmon

Description: If F is a section of G , then F is a monomorphism. A monomorphism that arises from a section is also known as asplit monomorphism. (Contributed by Mario Carneiro, 3-Jan-2017)

Ref Expression
Hypotheses sectmon.b B = Base C
sectmon.m M = Mono C
sectmon.s S = Sect C
sectmon.c φ C Cat
sectmon.x φ X B
sectmon.y φ Y B
sectmon.1 φ F X S Y G
Assertion sectmon φ F X M Y

Proof

Step Hyp Ref Expression
1 sectmon.b B = Base C
2 sectmon.m M = Mono C
3 sectmon.s S = Sect C
4 sectmon.c φ C Cat
5 sectmon.x φ X B
6 sectmon.y φ Y B
7 sectmon.1 φ F X S Y G
8 eqid Hom C = Hom C
9 eqid comp C = comp C
10 eqid Id C = Id C
11 1 8 9 10 3 4 5 6 issect φ F X S Y G F X Hom C Y G Y Hom C X G X Y comp C X F = Id C X
12 7 11 mpbid φ F X Hom C Y G Y Hom C X G X Y comp C X F = Id C X
13 12 simp1d φ F X Hom C Y
14 oveq2 F x X comp C Y g = F x X comp C Y h G x Y comp C X F x X comp C Y g = G x Y comp C X F x X comp C Y h
15 12 simp3d φ G X Y comp C X F = Id C X
16 15 ad2antrr φ x B g x Hom C X h x Hom C X G X Y comp C X F = Id C X
17 16 oveq1d φ x B g x Hom C X h x Hom C X G X Y comp C X F x X comp C X g = Id C X x X comp C X g
18 4 ad2antrr φ x B g x Hom C X h x Hom C X C Cat
19 simplr φ x B g x Hom C X h x Hom C X x B
20 5 ad2antrr φ x B g x Hom C X h x Hom C X X B
21 6 ad2antrr φ x B g x Hom C X h x Hom C X Y B
22 simprl φ x B g x Hom C X h x Hom C X g x Hom C X
23 13 ad2antrr φ x B g x Hom C X h x Hom C X F X Hom C Y
24 12 simp2d φ G Y Hom C X
25 24 ad2antrr φ x B g x Hom C X h x Hom C X G Y Hom C X
26 1 8 9 18 19 20 21 22 23 20 25 catass φ x B g x Hom C X h x Hom C X G X Y comp C X F x X comp C X g = G x Y comp C X F x X comp C Y g
27 1 8 10 18 19 9 20 22 catlid φ x B g x Hom C X h x Hom C X Id C X x X comp C X g = g
28 17 26 27 3eqtr3d φ x B g x Hom C X h x Hom C X G x Y comp C X F x X comp C Y g = g
29 16 oveq1d φ x B g x Hom C X h x Hom C X G X Y comp C X F x X comp C X h = Id C X x X comp C X h
30 simprr φ x B g x Hom C X h x Hom C X h x Hom C X
31 1 8 9 18 19 20 21 30 23 20 25 catass φ x B g x Hom C X h x Hom C X G X Y comp C X F x X comp C X h = G x Y comp C X F x X comp C Y h
32 1 8 10 18 19 9 20 30 catlid φ x B g x Hom C X h x Hom C X Id C X x X comp C X h = h
33 29 31 32 3eqtr3d φ x B g x Hom C X h x Hom C X G x Y comp C X F x X comp C Y h = h
34 28 33 eqeq12d φ x B g x Hom C X h x Hom C X G x Y comp C X F x X comp C Y g = G x Y comp C X F x X comp C Y h g = h
35 14 34 syl5ib φ x B g x Hom C X h x Hom C X F x X comp C Y g = F x X comp C Y h g = h
36 35 ralrimivva φ x B g x Hom C X h x Hom C X F x X comp C Y g = F x X comp C Y h g = h
37 36 ralrimiva φ x B g x Hom C X h x Hom C X F x X comp C Y g = F x X comp C Y h g = h
38 1 8 9 2 4 5 6 ismon2 φ F X M Y F X Hom C Y x B g x Hom C X h x Hom C X F x X comp C Y g = F x X comp C Y h g = h
39 13 37 38 mpbir2and φ F X M Y