Step |
Hyp |
Ref |
Expression |
1 |
|
sectmon.b |
|
2 |
|
sectmon.m |
|
3 |
|
sectmon.s |
|
4 |
|
sectmon.c |
|
5 |
|
sectmon.x |
|
6 |
|
sectmon.y |
|
7 |
|
sectmon.1 |
|
8 |
|
eqid |
|
9 |
|
eqid |
|
10 |
|
eqid |
|
11 |
1 8 9 10 3 4 5 6
|
issect |
|
12 |
7 11
|
mpbid |
|
13 |
12
|
simp1d |
|
14 |
|
oveq2 |
|
15 |
12
|
simp3d |
|
16 |
15
|
ad2antrr |
|
17 |
16
|
oveq1d |
|
18 |
4
|
ad2antrr |
|
19 |
|
simplr |
|
20 |
5
|
ad2antrr |
|
21 |
6
|
ad2antrr |
|
22 |
|
simprl |
|
23 |
13
|
ad2antrr |
|
24 |
12
|
simp2d |
|
25 |
24
|
ad2antrr |
|
26 |
1 8 9 18 19 20 21 22 23 20 25
|
catass |
|
27 |
1 8 10 18 19 9 20 22
|
catlid |
|
28 |
17 26 27
|
3eqtr3d |
|
29 |
16
|
oveq1d |
|
30 |
|
simprr |
|
31 |
1 8 9 18 19 20 21 30 23 20 25
|
catass |
|
32 |
1 8 10 18 19 9 20 30
|
catlid |
|
33 |
29 31 32
|
3eqtr3d |
|
34 |
28 33
|
eqeq12d |
|
35 |
14 34
|
syl5ib |
|
36 |
35
|
ralrimivva |
|
37 |
36
|
ralrimiva |
|
38 |
1 8 9 2 4 5 6
|
ismon2 |
|
39 |
13 37 38
|
mpbir2and |
|