Metamath Proof Explorer


Theorem seeq12d

Description: Equality deduction for the set-like predicate. (Contributed by Matthew House, 10-Sep-2025)

Ref Expression
Hypotheses seeq12d.1 φ R = S
seeq12d.2 φ A = B
Assertion seeq12d φ R Se A S Se B

Proof

Step Hyp Ref Expression
1 seeq12d.1 φ R = S
2 seeq12d.2 φ A = B
3 seeq1 R = S R Se A S Se A
4 seeq2 A = B S Se A S Se B
5 3 4 sylan9bb R = S A = B R Se A S Se B
6 1 2 5 syl2anc φ R Se A S Se B