Metamath Proof Explorer


Theorem seeq2

Description: Equality theorem for the set-like predicate. (Contributed by Mario Carneiro, 24-Jun-2015)

Ref Expression
Assertion seeq2 A = B R Se A R Se B

Proof

Step Hyp Ref Expression
1 eqimss2 A = B B A
2 sess2 B A R Se A R Se B
3 1 2 syl A = B R Se A R Se B
4 eqimss A = B A B
5 sess2 A B R Se B R Se A
6 4 5 syl A = B R Se B R Se A
7 3 6 impbid A = B R Se A R Se B