Metamath Proof Explorer


Theorem seex

Description: The R -preimage of an element of the base set in a set-like relation is a set. (Contributed by Mario Carneiro, 19-Nov-2014)

Ref Expression
Assertion seex R Se A B A x A | x R B V

Proof

Step Hyp Ref Expression
1 df-se R Se A y A x A | x R y V
2 breq2 y = B x R y x R B
3 2 rabbidv y = B x A | x R y = x A | x R B
4 3 eleq1d y = B x A | x R y V x A | x R B V
5 4 rspccva y A x A | x R y V B A x A | x R B V
6 1 5 sylanb R Se A B A x A | x R B V