Metamath Proof Explorer


Theorem seinxp

Description: Intersection of set-like relation with Cartesian product of its field. (Contributed by Mario Carneiro, 22-Jun-2015)

Ref Expression
Assertion seinxp R Se A R A × A Se A

Proof

Step Hyp Ref Expression
1 brinxp y A x A y R x y R A × A x
2 1 ancoms x A y A y R x y R A × A x
3 2 rabbidva x A y A | y R x = y A | y R A × A x
4 3 eleq1d x A y A | y R x V y A | y R A × A x V
5 4 ralbiia x A y A | y R x V x A y A | y R A × A x V
6 df-se R Se A x A y A | y R x V
7 df-se R A × A Se A x A y A | y R A × A x V
8 5 6 7 3bitr4i R Se A R A × A Se A