Metamath Proof Explorer


Theorem selberg

Description: Selberg's symmetry formula. The statement has many forms, and this one is equivalent to the statement that sum_ n <_ x , Lam ( n ) log n + sum_ m x. n <_ x , Lam ( m ) Lam ( n ) = 2 x log x + O ( x ) . Equation 10.4.10 of Shapiro, p. 419. (Contributed by Mario Carneiro, 23-May-2016)

Ref Expression
Assertion selberg x + n = 1 x Λ n log n + ψ x n x 2 log x 𝑂1

Proof

Step Hyp Ref Expression
1 fveq2 n = d Λ n = Λ d
2 oveq2 n = d x n = x d
3 2 fveq2d n = d ψ x n = ψ x d
4 1 3 oveq12d n = d Λ n ψ x n = Λ d ψ x d
5 4 cbvsumv n = 1 x Λ n ψ x n = d = 1 x Λ d ψ x d
6 fzfid x + d 1 x 1 x d Fin
7 elfznn d 1 x d
8 7 adantl x + d 1 x d
9 vmacl d Λ d
10 8 9 syl x + d 1 x Λ d
11 10 recnd x + d 1 x Λ d
12 elfznn m 1 x d m
13 12 adantl x + d 1 x m 1 x d m
14 vmacl m Λ m
15 13 14 syl x + d 1 x m 1 x d Λ m
16 15 recnd x + d 1 x m 1 x d Λ m
17 6 11 16 fsummulc2 x + d 1 x Λ d m = 1 x d Λ m = m = 1 x d Λ d Λ m
18 7 nnrpd d 1 x d +
19 rpdivcl x + d + x d +
20 18 19 sylan2 x + d 1 x x d +
21 20 rpred x + d 1 x x d
22 chpval x d ψ x d = m = 1 x d Λ m
23 21 22 syl x + d 1 x ψ x d = m = 1 x d Λ m
24 23 oveq2d x + d 1 x Λ d ψ x d = Λ d m = 1 x d Λ m
25 13 nncnd x + d 1 x m 1 x d m
26 7 ad2antlr x + d 1 x m 1 x d d
27 26 nncnd x + d 1 x m 1 x d d
28 26 nnne0d x + d 1 x m 1 x d d 0
29 25 27 28 divcan3d x + d 1 x m 1 x d d m d = m
30 29 fveq2d x + d 1 x m 1 x d Λ d m d = Λ m
31 30 oveq2d x + d 1 x m 1 x d Λ d Λ d m d = Λ d Λ m
32 31 sumeq2dv x + d 1 x m = 1 x d Λ d Λ d m d = m = 1 x d Λ d Λ m
33 17 24 32 3eqtr4d x + d 1 x Λ d ψ x d = m = 1 x d Λ d Λ d m d
34 33 sumeq2dv x + d = 1 x Λ d ψ x d = d = 1 x m = 1 x d Λ d Λ d m d
35 5 34 syl5eq x + n = 1 x Λ n ψ x n = d = 1 x m = 1 x d Λ d Λ d m d
36 fvoveq1 n = d m Λ n d = Λ d m d
37 36 oveq2d n = d m Λ d Λ n d = Λ d Λ d m d
38 rpre x + x
39 ssrab2 y | y n
40 simprr x + n 1 x d y | y n d y | y n
41 39 40 sselid x + n 1 x d y | y n d
42 41 anassrs x + n 1 x d y | y n d
43 42 9 syl x + n 1 x d y | y n Λ d
44 elfznn n 1 x n
45 44 adantl x + n 1 x n
46 dvdsdivcl n d y | y n n d y | y n
47 45 46 sylan x + n 1 x d y | y n n d y | y n
48 39 47 sselid x + n 1 x d y | y n n d
49 vmacl n d Λ n d
50 48 49 syl x + n 1 x d y | y n Λ n d
51 43 50 remulcld x + n 1 x d y | y n Λ d Λ n d
52 51 recnd x + n 1 x d y | y n Λ d Λ n d
53 52 anasss x + n 1 x d y | y n Λ d Λ n d
54 37 38 53 dvdsflsumcom x + n = 1 x d y | y n Λ d Λ n d = d = 1 x m = 1 x d Λ d Λ d m d
55 35 54 eqtr4d x + n = 1 x Λ n ψ x n = n = 1 x d y | y n Λ d Λ n d
56 55 oveq1d x + n = 1 x Λ n ψ x n + n = 1 x Λ n log n = n = 1 x d y | y n Λ d Λ n d + n = 1 x Λ n log n
57 fzfid x + 1 x Fin
58 vmacl n Λ n
59 45 58 syl x + n 1 x Λ n
60 59 recnd x + n 1 x Λ n
61 44 nnrpd n 1 x n +
62 rpdivcl x + n + x n +
63 61 62 sylan2 x + n 1 x x n +
64 63 rpred x + n 1 x x n
65 chpcl x n ψ x n
66 64 65 syl x + n 1 x ψ x n
67 66 recnd x + n 1 x ψ x n
68 60 67 mulcld x + n 1 x Λ n ψ x n
69 45 nnrpd x + n 1 x n +
70 relogcl n + log n
71 69 70 syl x + n 1 x log n
72 71 recnd x + n 1 x log n
73 60 72 mulcld x + n 1 x Λ n log n
74 57 68 73 fsumadd x + n = 1 x Λ n ψ x n + Λ n log n = n = 1 x Λ n ψ x n + n = 1 x Λ n log n
75 fzfid x + n 1 x 1 n Fin
76 dvdsssfz1 n y | y n 1 n
77 45 76 syl x + n 1 x y | y n 1 n
78 75 77 ssfid x + n 1 x y | y n Fin
79 78 51 fsumrecl x + n 1 x d y | y n Λ d Λ n d
80 79 recnd x + n 1 x d y | y n Λ d Λ n d
81 57 80 73 fsumadd x + n = 1 x d y | y n Λ d Λ n d + Λ n log n = n = 1 x d y | y n Λ d Λ n d + n = 1 x Λ n log n
82 56 74 81 3eqtr4d x + n = 1 x Λ n ψ x n + Λ n log n = n = 1 x d y | y n Λ d Λ n d + Λ n log n
83 72 67 addcomd x + n 1 x log n + ψ x n = ψ x n + log n
84 83 oveq2d x + n 1 x Λ n log n + ψ x n = Λ n ψ x n + log n
85 60 67 72 adddid x + n 1 x Λ n ψ x n + log n = Λ n ψ x n + Λ n log n
86 84 85 eqtrd x + n 1 x Λ n log n + ψ x n = Λ n ψ x n + Λ n log n
87 86 sumeq2dv x + n = 1 x Λ n log n + ψ x n = n = 1 x Λ n ψ x n + Λ n log n
88 logsqvma2 n d y | y n μ d log n d 2 = d y | y n Λ d Λ n d + Λ n log n
89 45 88 syl x + n 1 x d y | y n μ d log n d 2 = d y | y n Λ d Λ n d + Λ n log n
90 89 sumeq2dv x + n = 1 x d y | y n μ d log n d 2 = n = 1 x d y | y n Λ d Λ n d + Λ n log n
91 82 87 90 3eqtr4d x + n = 1 x Λ n log n + ψ x n = n = 1 x d y | y n μ d log n d 2
92 fvoveq1 n = d m log n d = log d m d
93 92 oveq1d n = d m log n d 2 = log d m d 2
94 93 oveq2d n = d m μ d log n d 2 = μ d log d m d 2
95 mucl d μ d
96 41 95 syl x + n 1 x d y | y n μ d
97 96 zcnd x + n 1 x d y | y n μ d
98 61 ad2antrl x + n 1 x d y | y n n +
99 41 nnrpd x + n 1 x d y | y n d +
100 98 99 rpdivcld x + n 1 x d y | y n n d +
101 relogcl n d + log n d
102 101 recnd n d + log n d
103 100 102 syl x + n 1 x d y | y n log n d
104 103 sqcld x + n 1 x d y | y n log n d 2
105 97 104 mulcld x + n 1 x d y | y n μ d log n d 2
106 94 38 105 dvdsflsumcom x + n = 1 x d y | y n μ d log n d 2 = d = 1 x m = 1 x d μ d log d m d 2
107 29 fveq2d x + d 1 x m 1 x d log d m d = log m
108 107 oveq1d x + d 1 x m 1 x d log d m d 2 = log m 2
109 108 oveq2d x + d 1 x m 1 x d μ d log d m d 2 = μ d log m 2
110 109 sumeq2dv x + d 1 x m = 1 x d μ d log d m d 2 = m = 1 x d μ d log m 2
111 110 sumeq2dv x + d = 1 x m = 1 x d μ d log d m d 2 = d = 1 x m = 1 x d μ d log m 2
112 91 106 111 3eqtrd x + n = 1 x Λ n log n + ψ x n = d = 1 x m = 1 x d μ d log m 2
113 112 oveq1d x + n = 1 x Λ n log n + ψ x n x = d = 1 x m = 1 x d μ d log m 2 x
114 113 oveq1d x + n = 1 x Λ n log n + ψ x n x 2 log x = d = 1 x m = 1 x d μ d log m 2 x 2 log x
115 114 mpteq2ia x + n = 1 x Λ n log n + ψ x n x 2 log x = x + d = 1 x m = 1 x d μ d log m 2 x 2 log x
116 eqid log x d 2 + 2 - 2 log x d d = log x d 2 + 2 - 2 log x d d
117 116 selberglem2 x + d = 1 x m = 1 x d μ d log m 2 x 2 log x 𝑂1
118 115 117 eqeltri x + n = 1 x Λ n log n + ψ x n x 2 log x 𝑂1