Step |
Hyp |
Ref |
Expression |
1 |
|
fveq2 |
|
2 |
|
oveq2 |
|
3 |
2
|
fveq2d |
|
4 |
1 3
|
oveq12d |
|
5 |
4
|
cbvsumv |
|
6 |
|
fzfid |
|
7 |
|
elfznn |
|
8 |
7
|
adantl |
|
9 |
|
vmacl |
|
10 |
8 9
|
syl |
|
11 |
10
|
recnd |
|
12 |
|
elfznn |
|
13 |
12
|
adantl |
|
14 |
|
vmacl |
|
15 |
13 14
|
syl |
|
16 |
15
|
recnd |
|
17 |
6 11 16
|
fsummulc2 |
|
18 |
7
|
nnrpd |
|
19 |
|
rpdivcl |
|
20 |
18 19
|
sylan2 |
|
21 |
20
|
rpred |
|
22 |
|
chpval |
|
23 |
21 22
|
syl |
|
24 |
23
|
oveq2d |
|
25 |
13
|
nncnd |
|
26 |
7
|
ad2antlr |
|
27 |
26
|
nncnd |
|
28 |
26
|
nnne0d |
|
29 |
25 27 28
|
divcan3d |
|
30 |
29
|
fveq2d |
|
31 |
30
|
oveq2d |
|
32 |
31
|
sumeq2dv |
|
33 |
17 24 32
|
3eqtr4d |
|
34 |
33
|
sumeq2dv |
|
35 |
5 34
|
syl5eq |
|
36 |
|
fvoveq1 |
|
37 |
36
|
oveq2d |
|
38 |
|
rpre |
|
39 |
|
ssrab2 |
|
40 |
|
simprr |
|
41 |
39 40
|
sselid |
|
42 |
41
|
anassrs |
|
43 |
42 9
|
syl |
|
44 |
|
elfznn |
|
45 |
44
|
adantl |
|
46 |
|
dvdsdivcl |
|
47 |
45 46
|
sylan |
|
48 |
39 47
|
sselid |
|
49 |
|
vmacl |
|
50 |
48 49
|
syl |
|
51 |
43 50
|
remulcld |
|
52 |
51
|
recnd |
|
53 |
52
|
anasss |
|
54 |
37 38 53
|
dvdsflsumcom |
|
55 |
35 54
|
eqtr4d |
|
56 |
55
|
oveq1d |
|
57 |
|
fzfid |
|
58 |
|
vmacl |
|
59 |
45 58
|
syl |
|
60 |
59
|
recnd |
|
61 |
44
|
nnrpd |
|
62 |
|
rpdivcl |
|
63 |
61 62
|
sylan2 |
|
64 |
63
|
rpred |
|
65 |
|
chpcl |
|
66 |
64 65
|
syl |
|
67 |
66
|
recnd |
|
68 |
60 67
|
mulcld |
|
69 |
45
|
nnrpd |
|
70 |
|
relogcl |
|
71 |
69 70
|
syl |
|
72 |
71
|
recnd |
|
73 |
60 72
|
mulcld |
|
74 |
57 68 73
|
fsumadd |
|
75 |
|
fzfid |
|
76 |
|
dvdsssfz1 |
|
77 |
45 76
|
syl |
|
78 |
75 77
|
ssfid |
|
79 |
78 51
|
fsumrecl |
|
80 |
79
|
recnd |
|
81 |
57 80 73
|
fsumadd |
|
82 |
56 74 81
|
3eqtr4d |
|
83 |
72 67
|
addcomd |
|
84 |
83
|
oveq2d |
|
85 |
60 67 72
|
adddid |
|
86 |
84 85
|
eqtrd |
|
87 |
86
|
sumeq2dv |
|
88 |
|
logsqvma2 |
|
89 |
45 88
|
syl |
|
90 |
89
|
sumeq2dv |
|
91 |
82 87 90
|
3eqtr4d |
|
92 |
|
fvoveq1 |
|
93 |
92
|
oveq1d |
|
94 |
93
|
oveq2d |
|
95 |
|
mucl |
|
96 |
41 95
|
syl |
|
97 |
96
|
zcnd |
|
98 |
61
|
ad2antrl |
|
99 |
41
|
nnrpd |
|
100 |
98 99
|
rpdivcld |
|
101 |
|
relogcl |
|
102 |
101
|
recnd |
|
103 |
100 102
|
syl |
|
104 |
103
|
sqcld |
|
105 |
97 104
|
mulcld |
|
106 |
94 38 105
|
dvdsflsumcom |
|
107 |
29
|
fveq2d |
|
108 |
107
|
oveq1d |
|
109 |
108
|
oveq2d |
|
110 |
109
|
sumeq2dv |
|
111 |
110
|
sumeq2dv |
|
112 |
91 106 111
|
3eqtrd |
|
113 |
112
|
oveq1d |
|
114 |
113
|
oveq1d |
|
115 |
114
|
mpteq2ia |
|
116 |
|
eqid |
|
117 |
116
|
selberglem2 |
|
118 |
115 117
|
eqeltri |
|