Step |
Hyp |
Ref |
Expression |
1 |
|
reex |
|
2 |
|
rpssre |
|
3 |
1 2
|
ssexi |
|
4 |
3
|
a1i |
|
5 |
|
ovexd |
|
6 |
|
ovexd |
|
7 |
|
eqidd |
|
8 |
|
eqidd |
|
9 |
4 5 6 7 8
|
offval2 |
|
10 |
9
|
mptru |
|
11 |
|
fzfid |
|
12 |
|
elfznn |
|
13 |
12
|
adantl |
|
14 |
|
vmacl |
|
15 |
13 14
|
syl |
|
16 |
15
|
recnd |
|
17 |
13
|
nnrpd |
|
18 |
|
relogcl |
|
19 |
17 18
|
syl |
|
20 |
19
|
recnd |
|
21 |
|
rpre |
|
22 |
|
nndivre |
|
23 |
21 12 22
|
syl2an |
|
24 |
|
chpcl |
|
25 |
23 24
|
syl |
|
26 |
25
|
recnd |
|
27 |
20 26
|
addcld |
|
28 |
16 27
|
mulcld |
|
29 |
11 28
|
fsumcl |
|
30 |
|
rpcn |
|
31 |
|
rpne0 |
|
32 |
29 30 31
|
divcld |
|
33 |
|
2cn |
|
34 |
|
relogcl |
|
35 |
34
|
recnd |
|
36 |
|
mulcl |
|
37 |
33 35 36
|
sylancr |
|
38 |
16 20
|
mulcld |
|
39 |
11 38
|
fsumcl |
|
40 |
|
chpcl |
|
41 |
21 40
|
syl |
|
42 |
41
|
recnd |
|
43 |
42 35
|
mulcld |
|
44 |
39 43
|
subcld |
|
45 |
44 30 31
|
divcld |
|
46 |
32 37 45
|
sub32d |
|
47 |
|
rpcnne0 |
|
48 |
|
divsubdir |
|
49 |
29 44 47 48
|
syl3anc |
|
50 |
16 20 26
|
adddid |
|
51 |
50
|
sumeq2dv |
|
52 |
16 26
|
mulcld |
|
53 |
11 38 52
|
fsumadd |
|
54 |
51 53
|
eqtrd |
|
55 |
54
|
oveq1d |
|
56 |
11 52
|
fsumcl |
|
57 |
39 56 43
|
pnncand |
|
58 |
56 43
|
addcomd |
|
59 |
55 57 58
|
3eqtrd |
|
60 |
59
|
oveq1d |
|
61 |
49 60
|
eqtr3d |
|
62 |
61
|
oveq1d |
|
63 |
46 62
|
eqtrd |
|
64 |
63
|
mpteq2ia |
|
65 |
10 64
|
eqtri |
|
66 |
|
selberg |
|
67 |
|
selberg2lem |
|
68 |
|
o1sub |
|
69 |
66 67 68
|
mp2an |
|
70 |
65 69
|
eqeltrri |
|