Metamath Proof Explorer


Theorem selberg2

Description: Selberg's symmetry formula, using the second Chebyshev function. Equation 10.4.14 of Shapiro, p. 420. (Contributed by Mario Carneiro, 23-May-2016)

Ref Expression
Assertion selberg2 x + ψ x log x + n = 1 x Λ n ψ x n x 2 log x 𝑂1

Proof

Step Hyp Ref Expression
1 reex V
2 rpssre +
3 1 2 ssexi + V
4 3 a1i + V
5 ovexd x + n = 1 x Λ n log n + ψ x n x 2 log x V
6 ovexd x + n = 1 x Λ n log n ψ x log x x V
7 eqidd x + n = 1 x Λ n log n + ψ x n x 2 log x = x + n = 1 x Λ n log n + ψ x n x 2 log x
8 eqidd x + n = 1 x Λ n log n ψ x log x x = x + n = 1 x Λ n log n ψ x log x x
9 4 5 6 7 8 offval2 x + n = 1 x Λ n log n + ψ x n x 2 log x f x + n = 1 x Λ n log n ψ x log x x = x + n = 1 x Λ n log n + ψ x n x - 2 log x - n = 1 x Λ n log n ψ x log x x
10 9 mptru x + n = 1 x Λ n log n + ψ x n x 2 log x f x + n = 1 x Λ n log n ψ x log x x = x + n = 1 x Λ n log n + ψ x n x - 2 log x - n = 1 x Λ n log n ψ x log x x
11 fzfid x + 1 x Fin
12 elfznn n 1 x n
13 12 adantl x + n 1 x n
14 vmacl n Λ n
15 13 14 syl x + n 1 x Λ n
16 15 recnd x + n 1 x Λ n
17 13 nnrpd x + n 1 x n +
18 relogcl n + log n
19 17 18 syl x + n 1 x log n
20 19 recnd x + n 1 x log n
21 rpre x + x
22 nndivre x n x n
23 21 12 22 syl2an x + n 1 x x n
24 chpcl x n ψ x n
25 23 24 syl x + n 1 x ψ x n
26 25 recnd x + n 1 x ψ x n
27 20 26 addcld x + n 1 x log n + ψ x n
28 16 27 mulcld x + n 1 x Λ n log n + ψ x n
29 11 28 fsumcl x + n = 1 x Λ n log n + ψ x n
30 rpcn x + x
31 rpne0 x + x 0
32 29 30 31 divcld x + n = 1 x Λ n log n + ψ x n x
33 2cn 2
34 relogcl x + log x
35 34 recnd x + log x
36 mulcl 2 log x 2 log x
37 33 35 36 sylancr x + 2 log x
38 16 20 mulcld x + n 1 x Λ n log n
39 11 38 fsumcl x + n = 1 x Λ n log n
40 chpcl x ψ x
41 21 40 syl x + ψ x
42 41 recnd x + ψ x
43 42 35 mulcld x + ψ x log x
44 39 43 subcld x + n = 1 x Λ n log n ψ x log x
45 44 30 31 divcld x + n = 1 x Λ n log n ψ x log x x
46 32 37 45 sub32d x + n = 1 x Λ n log n + ψ x n x - 2 log x - n = 1 x Λ n log n ψ x log x x = n = 1 x Λ n log n + ψ x n x - n = 1 x Λ n log n ψ x log x x - 2 log x
47 rpcnne0 x + x x 0
48 divsubdir n = 1 x Λ n log n + ψ x n n = 1 x Λ n log n ψ x log x x x 0 n = 1 x Λ n log n + ψ x n n = 1 x Λ n log n ψ x log x x = n = 1 x Λ n log n + ψ x n x n = 1 x Λ n log n ψ x log x x
49 29 44 47 48 syl3anc x + n = 1 x Λ n log n + ψ x n n = 1 x Λ n log n ψ x log x x = n = 1 x Λ n log n + ψ x n x n = 1 x Λ n log n ψ x log x x
50 16 20 26 adddid x + n 1 x Λ n log n + ψ x n = Λ n log n + Λ n ψ x n
51 50 sumeq2dv x + n = 1 x Λ n log n + ψ x n = n = 1 x Λ n log n + Λ n ψ x n
52 16 26 mulcld x + n 1 x Λ n ψ x n
53 11 38 52 fsumadd x + n = 1 x Λ n log n + Λ n ψ x n = n = 1 x Λ n log n + n = 1 x Λ n ψ x n
54 51 53 eqtrd x + n = 1 x Λ n log n + ψ x n = n = 1 x Λ n log n + n = 1 x Λ n ψ x n
55 54 oveq1d x + n = 1 x Λ n log n + ψ x n n = 1 x Λ n log n ψ x log x = n = 1 x Λ n log n + n = 1 x Λ n ψ x n - n = 1 x Λ n log n ψ x log x
56 11 52 fsumcl x + n = 1 x Λ n ψ x n
57 39 56 43 pnncand x + n = 1 x Λ n log n + n = 1 x Λ n ψ x n - n = 1 x Λ n log n ψ x log x = n = 1 x Λ n ψ x n + ψ x log x
58 56 43 addcomd x + n = 1 x Λ n ψ x n + ψ x log x = ψ x log x + n = 1 x Λ n ψ x n
59 55 57 58 3eqtrd x + n = 1 x Λ n log n + ψ x n n = 1 x Λ n log n ψ x log x = ψ x log x + n = 1 x Λ n ψ x n
60 59 oveq1d x + n = 1 x Λ n log n + ψ x n n = 1 x Λ n log n ψ x log x x = ψ x log x + n = 1 x Λ n ψ x n x
61 49 60 eqtr3d x + n = 1 x Λ n log n + ψ x n x n = 1 x Λ n log n ψ x log x x = ψ x log x + n = 1 x Λ n ψ x n x
62 61 oveq1d x + n = 1 x Λ n log n + ψ x n x - n = 1 x Λ n log n ψ x log x x - 2 log x = ψ x log x + n = 1 x Λ n ψ x n x 2 log x
63 46 62 eqtrd x + n = 1 x Λ n log n + ψ x n x - 2 log x - n = 1 x Λ n log n ψ x log x x = ψ x log x + n = 1 x Λ n ψ x n x 2 log x
64 63 mpteq2ia x + n = 1 x Λ n log n + ψ x n x - 2 log x - n = 1 x Λ n log n ψ x log x x = x + ψ x log x + n = 1 x Λ n ψ x n x 2 log x
65 10 64 eqtri x + n = 1 x Λ n log n + ψ x n x 2 log x f x + n = 1 x Λ n log n ψ x log x x = x + ψ x log x + n = 1 x Λ n ψ x n x 2 log x
66 selberg x + n = 1 x Λ n log n + ψ x n x 2 log x 𝑂1
67 selberg2lem x + n = 1 x Λ n log n ψ x log x x 𝑂1
68 o1sub x + n = 1 x Λ n log n + ψ x n x 2 log x 𝑂1 x + n = 1 x Λ n log n ψ x log x x 𝑂1 x + n = 1 x Λ n log n + ψ x n x 2 log x f x + n = 1 x Λ n log n ψ x log x x 𝑂1
69 66 67 68 mp2an x + n = 1 x Λ n log n + ψ x n x 2 log x f x + n = 1 x Λ n log n ψ x log x x 𝑂1
70 65 69 eqeltrri x + ψ x log x + n = 1 x Λ n ψ x n x 2 log x 𝑂1