| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elioore |
|
| 2 |
1
|
adantl |
|
| 3 |
|
chpcl |
|
| 4 |
2 3
|
syl |
|
| 5 |
|
1rp |
|
| 6 |
5
|
a1i |
|
| 7 |
|
1red |
|
| 8 |
|
eliooord |
|
| 9 |
8
|
adantl |
|
| 10 |
9
|
simpld |
|
| 11 |
7 2 10
|
ltled |
|
| 12 |
2 6 11
|
rpgecld |
|
| 13 |
12
|
relogcld |
|
| 14 |
4 13
|
remulcld |
|
| 15 |
14
|
recnd |
|
| 16 |
|
fzfid |
|
| 17 |
|
elfznn |
|
| 18 |
17
|
adantl |
|
| 19 |
|
vmacl |
|
| 20 |
18 19
|
syl |
|
| 21 |
2
|
adantr |
|
| 22 |
21 18
|
nndivred |
|
| 23 |
|
chpcl |
|
| 24 |
22 23
|
syl |
|
| 25 |
20 24
|
remulcld |
|
| 26 |
16 25
|
fsumrecl |
|
| 27 |
26
|
recnd |
|
| 28 |
|
2re |
|
| 29 |
28
|
a1i |
|
| 30 |
2 10
|
rplogcld |
|
| 31 |
29 30
|
rerpdivcld |
|
| 32 |
18
|
nnrpd |
|
| 33 |
32
|
relogcld |
|
| 34 |
25 33
|
remulcld |
|
| 35 |
16 34
|
fsumrecl |
|
| 36 |
31 35
|
remulcld |
|
| 37 |
36 26
|
resubcld |
|
| 38 |
37
|
recnd |
|
| 39 |
15 27 38
|
addassd |
|
| 40 |
|
2cnd |
|
| 41 |
13
|
recnd |
|
| 42 |
30
|
rpne0d |
|
| 43 |
40 41 42
|
divcld |
|
| 44 |
35
|
recnd |
|
| 45 |
43 44
|
mulcld |
|
| 46 |
27 45
|
pncan3d |
|
| 47 |
46
|
oveq2d |
|
| 48 |
39 47
|
eqtr2d |
|
| 49 |
48
|
oveq1d |
|
| 50 |
14 26
|
readdcld |
|
| 51 |
50
|
recnd |
|
| 52 |
2
|
recnd |
|
| 53 |
12
|
rpne0d |
|
| 54 |
51 38 52 53
|
divdird |
|
| 55 |
49 54
|
eqtrd |
|
| 56 |
55
|
oveq1d |
|
| 57 |
50 12
|
rerpdivcld |
|
| 58 |
57
|
recnd |
|
| 59 |
37 12
|
rerpdivcld |
|
| 60 |
59
|
recnd |
|
| 61 |
29 13
|
remulcld |
|
| 62 |
61
|
recnd |
|
| 63 |
58 60 62
|
addsubd |
|
| 64 |
56 63
|
eqtrd |
|
| 65 |
64
|
mpteq2dva |
|
| 66 |
57 61
|
resubcld |
|
| 67 |
12
|
ex |
|
| 68 |
67
|
ssrdv |
|
| 69 |
|
selberg2 |
|
| 70 |
69
|
a1i |
|
| 71 |
68 70
|
o1res2 |
|
| 72 |
|
selberg3lem2 |
|
| 73 |
72
|
a1i |
|
| 74 |
66 59 71 73
|
o1add2 |
|
| 75 |
65 74
|
eqeltrd |
|
| 76 |
75
|
mptru |
|