Metamath Proof Explorer


Theorem selberg3

Description: Introduce a log weighting on the summands of sum_ m x. n <_ x , Lam ( m ) Lam ( n ) , the core of selberg2 (written here as sum_ n <_ x , Lam ( n ) psi ( x / n ) ). Equation 10.6.7 of Shapiro, p. 422. (Contributed by Mario Carneiro, 30-May-2016)

Ref Expression
Assertion selberg3 x 1 +∞ ψ x log x + 2 log x n = 1 x Λ n ψ x n log n x 2 log x 𝑂1

Proof

Step Hyp Ref Expression
1 elioore x 1 +∞ x
2 1 adantl x 1 +∞ x
3 chpcl x ψ x
4 2 3 syl x 1 +∞ ψ x
5 1rp 1 +
6 5 a1i x 1 +∞ 1 +
7 1red x 1 +∞ 1
8 eliooord x 1 +∞ 1 < x x < +∞
9 8 adantl x 1 +∞ 1 < x x < +∞
10 9 simpld x 1 +∞ 1 < x
11 7 2 10 ltled x 1 +∞ 1 x
12 2 6 11 rpgecld x 1 +∞ x +
13 12 relogcld x 1 +∞ log x
14 4 13 remulcld x 1 +∞ ψ x log x
15 14 recnd x 1 +∞ ψ x log x
16 fzfid x 1 +∞ 1 x Fin
17 elfznn n 1 x n
18 17 adantl x 1 +∞ n 1 x n
19 vmacl n Λ n
20 18 19 syl x 1 +∞ n 1 x Λ n
21 2 adantr x 1 +∞ n 1 x x
22 21 18 nndivred x 1 +∞ n 1 x x n
23 chpcl x n ψ x n
24 22 23 syl x 1 +∞ n 1 x ψ x n
25 20 24 remulcld x 1 +∞ n 1 x Λ n ψ x n
26 16 25 fsumrecl x 1 +∞ n = 1 x Λ n ψ x n
27 26 recnd x 1 +∞ n = 1 x Λ n ψ x n
28 2re 2
29 28 a1i x 1 +∞ 2
30 2 10 rplogcld x 1 +∞ log x +
31 29 30 rerpdivcld x 1 +∞ 2 log x
32 18 nnrpd x 1 +∞ n 1 x n +
33 32 relogcld x 1 +∞ n 1 x log n
34 25 33 remulcld x 1 +∞ n 1 x Λ n ψ x n log n
35 16 34 fsumrecl x 1 +∞ n = 1 x Λ n ψ x n log n
36 31 35 remulcld x 1 +∞ 2 log x n = 1 x Λ n ψ x n log n
37 36 26 resubcld x 1 +∞ 2 log x n = 1 x Λ n ψ x n log n n = 1 x Λ n ψ x n
38 37 recnd x 1 +∞ 2 log x n = 1 x Λ n ψ x n log n n = 1 x Λ n ψ x n
39 15 27 38 addassd x 1 +∞ ψ x log x + n = 1 x Λ n ψ x n + 2 log x n = 1 x Λ n ψ x n log n n = 1 x Λ n ψ x n = ψ x log x + n = 1 x Λ n ψ x n + 2 log x n = 1 x Λ n ψ x n log n n = 1 x Λ n ψ x n
40 2cnd x 1 +∞ 2
41 13 recnd x 1 +∞ log x
42 30 rpne0d x 1 +∞ log x 0
43 40 41 42 divcld x 1 +∞ 2 log x
44 35 recnd x 1 +∞ n = 1 x Λ n ψ x n log n
45 43 44 mulcld x 1 +∞ 2 log x n = 1 x Λ n ψ x n log n
46 27 45 pncan3d x 1 +∞ n = 1 x Λ n ψ x n + 2 log x n = 1 x Λ n ψ x n log n - n = 1 x Λ n ψ x n = 2 log x n = 1 x Λ n ψ x n log n
47 46 oveq2d x 1 +∞ ψ x log x + n = 1 x Λ n ψ x n + 2 log x n = 1 x Λ n ψ x n log n n = 1 x Λ n ψ x n = ψ x log x + 2 log x n = 1 x Λ n ψ x n log n
48 39 47 eqtr2d x 1 +∞ ψ x log x + 2 log x n = 1 x Λ n ψ x n log n = ψ x log x + n = 1 x Λ n ψ x n + 2 log x n = 1 x Λ n ψ x n log n n = 1 x Λ n ψ x n
49 48 oveq1d x 1 +∞ ψ x log x + 2 log x n = 1 x Λ n ψ x n log n x = ψ x log x + n = 1 x Λ n ψ x n + 2 log x n = 1 x Λ n ψ x n log n n = 1 x Λ n ψ x n x
50 14 26 readdcld x 1 +∞ ψ x log x + n = 1 x Λ n ψ x n
51 50 recnd x 1 +∞ ψ x log x + n = 1 x Λ n ψ x n
52 2 recnd x 1 +∞ x
53 12 rpne0d x 1 +∞ x 0
54 51 38 52 53 divdird x 1 +∞ ψ x log x + n = 1 x Λ n ψ x n + 2 log x n = 1 x Λ n ψ x n log n n = 1 x Λ n ψ x n x = ψ x log x + n = 1 x Λ n ψ x n x + 2 log x n = 1 x Λ n ψ x n log n n = 1 x Λ n ψ x n x
55 49 54 eqtrd x 1 +∞ ψ x log x + 2 log x n = 1 x Λ n ψ x n log n x = ψ x log x + n = 1 x Λ n ψ x n x + 2 log x n = 1 x Λ n ψ x n log n n = 1 x Λ n ψ x n x
56 55 oveq1d x 1 +∞ ψ x log x + 2 log x n = 1 x Λ n ψ x n log n x 2 log x = ψ x log x + n = 1 x Λ n ψ x n x + 2 log x n = 1 x Λ n ψ x n log n n = 1 x Λ n ψ x n x - 2 log x
57 50 12 rerpdivcld x 1 +∞ ψ x log x + n = 1 x Λ n ψ x n x
58 57 recnd x 1 +∞ ψ x log x + n = 1 x Λ n ψ x n x
59 37 12 rerpdivcld x 1 +∞ 2 log x n = 1 x Λ n ψ x n log n n = 1 x Λ n ψ x n x
60 59 recnd x 1 +∞ 2 log x n = 1 x Λ n ψ x n log n n = 1 x Λ n ψ x n x
61 29 13 remulcld x 1 +∞ 2 log x
62 61 recnd x 1 +∞ 2 log x
63 58 60 62 addsubd x 1 +∞ ψ x log x + n = 1 x Λ n ψ x n x + 2 log x n = 1 x Λ n ψ x n log n n = 1 x Λ n ψ x n x - 2 log x = ψ x log x + n = 1 x Λ n ψ x n x - 2 log x + 2 log x n = 1 x Λ n ψ x n log n n = 1 x Λ n ψ x n x
64 56 63 eqtrd x 1 +∞ ψ x log x + 2 log x n = 1 x Λ n ψ x n log n x 2 log x = ψ x log x + n = 1 x Λ n ψ x n x - 2 log x + 2 log x n = 1 x Λ n ψ x n log n n = 1 x Λ n ψ x n x
65 64 mpteq2dva x 1 +∞ ψ x log x + 2 log x n = 1 x Λ n ψ x n log n x 2 log x = x 1 +∞ ψ x log x + n = 1 x Λ n ψ x n x - 2 log x + 2 log x n = 1 x Λ n ψ x n log n n = 1 x Λ n ψ x n x
66 57 61 resubcld x 1 +∞ ψ x log x + n = 1 x Λ n ψ x n x 2 log x
67 12 ex x 1 +∞ x +
68 67 ssrdv 1 +∞ +
69 selberg2 x + ψ x log x + n = 1 x Λ n ψ x n x 2 log x 𝑂1
70 69 a1i x + ψ x log x + n = 1 x Λ n ψ x n x 2 log x 𝑂1
71 68 70 o1res2 x 1 +∞ ψ x log x + n = 1 x Λ n ψ x n x 2 log x 𝑂1
72 selberg3lem2 x 1 +∞ 2 log x n = 1 x Λ n ψ x n log n n = 1 x Λ n ψ x n x 𝑂1
73 72 a1i x 1 +∞ 2 log x n = 1 x Λ n ψ x n log n n = 1 x Λ n ψ x n x 𝑂1
74 66 59 71 73 o1add2 x 1 +∞ ψ x log x + n = 1 x Λ n ψ x n x - 2 log x + 2 log x n = 1 x Λ n ψ x n log n n = 1 x Λ n ψ x n x 𝑂1
75 65 74 eqeltrd x 1 +∞ ψ x log x + 2 log x n = 1 x Λ n ψ x n log n x 2 log x 𝑂1
76 75 mptru x 1 +∞ ψ x log x + 2 log x n = 1 x Λ n ψ x n log n x 2 log x 𝑂1