Step |
Hyp |
Ref |
Expression |
1 |
|
elioore |
|
2 |
1
|
adantl |
|
3 |
|
chpcl |
|
4 |
2 3
|
syl |
|
5 |
|
1rp |
|
6 |
5
|
a1i |
|
7 |
|
1red |
|
8 |
|
eliooord |
|
9 |
8
|
adantl |
|
10 |
9
|
simpld |
|
11 |
7 2 10
|
ltled |
|
12 |
2 6 11
|
rpgecld |
|
13 |
12
|
relogcld |
|
14 |
4 13
|
remulcld |
|
15 |
14
|
recnd |
|
16 |
|
fzfid |
|
17 |
|
elfznn |
|
18 |
17
|
adantl |
|
19 |
|
vmacl |
|
20 |
18 19
|
syl |
|
21 |
2
|
adantr |
|
22 |
21 18
|
nndivred |
|
23 |
|
chpcl |
|
24 |
22 23
|
syl |
|
25 |
20 24
|
remulcld |
|
26 |
16 25
|
fsumrecl |
|
27 |
26
|
recnd |
|
28 |
|
2re |
|
29 |
28
|
a1i |
|
30 |
2 10
|
rplogcld |
|
31 |
29 30
|
rerpdivcld |
|
32 |
18
|
nnrpd |
|
33 |
32
|
relogcld |
|
34 |
25 33
|
remulcld |
|
35 |
16 34
|
fsumrecl |
|
36 |
31 35
|
remulcld |
|
37 |
36 26
|
resubcld |
|
38 |
37
|
recnd |
|
39 |
15 27 38
|
addassd |
|
40 |
|
2cnd |
|
41 |
13
|
recnd |
|
42 |
30
|
rpne0d |
|
43 |
40 41 42
|
divcld |
|
44 |
35
|
recnd |
|
45 |
43 44
|
mulcld |
|
46 |
27 45
|
pncan3d |
|
47 |
46
|
oveq2d |
|
48 |
39 47
|
eqtr2d |
|
49 |
48
|
oveq1d |
|
50 |
14 26
|
readdcld |
|
51 |
50
|
recnd |
|
52 |
2
|
recnd |
|
53 |
12
|
rpne0d |
|
54 |
51 38 52 53
|
divdird |
|
55 |
49 54
|
eqtrd |
|
56 |
55
|
oveq1d |
|
57 |
50 12
|
rerpdivcld |
|
58 |
57
|
recnd |
|
59 |
37 12
|
rerpdivcld |
|
60 |
59
|
recnd |
|
61 |
29 13
|
remulcld |
|
62 |
61
|
recnd |
|
63 |
58 60 62
|
addsubd |
|
64 |
56 63
|
eqtrd |
|
65 |
64
|
mpteq2dva |
|
66 |
57 61
|
resubcld |
|
67 |
12
|
ex |
|
68 |
67
|
ssrdv |
|
69 |
|
selberg2 |
|
70 |
69
|
a1i |
|
71 |
68 70
|
o1res2 |
|
72 |
|
selberg3lem2 |
|
73 |
72
|
a1i |
|
74 |
66 59 71 73
|
o1add2 |
|
75 |
65 74
|
eqeltrd |
|
76 |
75
|
mptru |
|