Metamath Proof Explorer


Theorem selberg34r

Description: The sum of selberg3r and selberg4r . (Contributed by Mario Carneiro, 31-May-2016)

Ref Expression
Hypothesis pntrval.r R = a + ψ a a
Assertion selberg34r x 1 +∞ R x log x n = 1 x R x n m y | y n Λ m Λ n m Λ n log n log x x 𝑂1

Proof

Step Hyp Ref Expression
1 pntrval.r R = a + ψ a a
2 2re 2
3 2 a1i x 1 +∞ 2
4 elioore x 1 +∞ x
5 4 adantl x 1 +∞ x
6 1rp 1 +
7 6 a1i x 1 +∞ 1 +
8 1red x 1 +∞ 1
9 eliooord x 1 +∞ 1 < x x < +∞
10 9 adantl x 1 +∞ 1 < x x < +∞
11 10 simpld x 1 +∞ 1 < x
12 8 5 11 ltled x 1 +∞ 1 x
13 5 7 12 rpgecld x 1 +∞ x +
14 1 pntrf R : +
15 14 ffvelrni x + R x
16 13 15 syl x 1 +∞ R x
17 13 relogcld x 1 +∞ log x
18 16 17 remulcld x 1 +∞ R x log x
19 3 18 remulcld x 1 +∞ 2 R x log x
20 19 recnd x 1 +∞ 2 R x log x
21 5 11 rplogcld x 1 +∞ log x +
22 3 21 rerpdivcld x 1 +∞ 2 log x
23 22 recnd x 1 +∞ 2 log x
24 fzfid x 1 +∞ 1 x Fin
25 13 adantr x 1 +∞ n 1 x x +
26 elfznn n 1 x n
27 26 adantl x 1 +∞ n 1 x n
28 27 nnrpd x 1 +∞ n 1 x n +
29 25 28 rpdivcld x 1 +∞ n 1 x x n +
30 14 ffvelrni x n + R x n
31 29 30 syl x 1 +∞ n 1 x R x n
32 fzfid x 1 +∞ n 1 x 1 n Fin
33 dvdsssfz1 n y | y n 1 n
34 27 33 syl x 1 +∞ n 1 x y | y n 1 n
35 32 34 ssfid x 1 +∞ n 1 x y | y n Fin
36 ssrab2 y | y n
37 simpr x 1 +∞ n 1 x m y | y n m y | y n
38 36 37 sselid x 1 +∞ n 1 x m y | y n m
39 vmacl m Λ m
40 38 39 syl x 1 +∞ n 1 x m y | y n Λ m
41 dvdsdivcl n m y | y n n m y | y n
42 27 41 sylan x 1 +∞ n 1 x m y | y n n m y | y n
43 36 42 sselid x 1 +∞ n 1 x m y | y n n m
44 vmacl n m Λ n m
45 43 44 syl x 1 +∞ n 1 x m y | y n Λ n m
46 40 45 remulcld x 1 +∞ n 1 x m y | y n Λ m Λ n m
47 35 46 fsumrecl x 1 +∞ n 1 x m y | y n Λ m Λ n m
48 vmacl n Λ n
49 27 48 syl x 1 +∞ n 1 x Λ n
50 28 relogcld x 1 +∞ n 1 x log n
51 49 50 remulcld x 1 +∞ n 1 x Λ n log n
52 47 51 resubcld x 1 +∞ n 1 x m y | y n Λ m Λ n m Λ n log n
53 31 52 remulcld x 1 +∞ n 1 x R x n m y | y n Λ m Λ n m Λ n log n
54 24 53 fsumrecl x 1 +∞ n = 1 x R x n m y | y n Λ m Λ n m Λ n log n
55 54 recnd x 1 +∞ n = 1 x R x n m y | y n Λ m Λ n m Λ n log n
56 23 55 mulcld x 1 +∞ 2 log x n = 1 x R x n m y | y n Λ m Λ n m Λ n log n
57 20 56 subcld x 1 +∞ 2 R x log x 2 log x n = 1 x R x n m y | y n Λ m Λ n m Λ n log n
58 5 recnd x 1 +∞ x
59 2cnd x 1 +∞ 2
60 13 rpne0d x 1 +∞ x 0
61 2ne0 2 0
62 61 a1i x 1 +∞ 2 0
63 57 58 59 60 62 divdiv32d x 1 +∞ 2 R x log x 2 log x n = 1 x R x n m y | y n Λ m Λ n m Λ n log n x 2 = 2 R x log x 2 log x n = 1 x R x n m y | y n Λ m Λ n m Λ n log n 2 x
64 57 58 60 divcld x 1 +∞ 2 R x log x 2 log x n = 1 x R x n m y | y n Λ m Λ n m Λ n log n x
65 64 59 62 divrecd x 1 +∞ 2 R x log x 2 log x n = 1 x R x n m y | y n Λ m Λ n m Λ n log n x 2 = 2 R x log x 2 log x n = 1 x R x n m y | y n Λ m Λ n m Λ n log n x 1 2
66 20 56 59 62 divsubdird x 1 +∞ 2 R x log x 2 log x n = 1 x R x n m y | y n Λ m Λ n m Λ n log n 2 = 2 R x log x 2 2 log x n = 1 x R x n m y | y n Λ m Λ n m Λ n log n 2
67 18 recnd x 1 +∞ R x log x
68 67 59 62 divcan3d x 1 +∞ 2 R x log x 2 = R x log x
69 21 rpcnd x 1 +∞ log x
70 21 rpne0d x 1 +∞ log x 0
71 59 69 55 70 div32d x 1 +∞ 2 log x n = 1 x R x n m y | y n Λ m Λ n m Λ n log n = 2 n = 1 x R x n m y | y n Λ m Λ n m Λ n log n log x
72 71 oveq1d x 1 +∞ 2 log x n = 1 x R x n m y | y n Λ m Λ n m Λ n log n 2 = 2 n = 1 x R x n m y | y n Λ m Λ n m Λ n log n log x 2
73 54 21 rerpdivcld x 1 +∞ n = 1 x R x n m y | y n Λ m Λ n m Λ n log n log x
74 73 recnd x 1 +∞ n = 1 x R x n m y | y n Λ m Λ n m Λ n log n log x
75 74 59 62 divcan3d x 1 +∞ 2 n = 1 x R x n m y | y n Λ m Λ n m Λ n log n log x 2 = n = 1 x R x n m y | y n Λ m Λ n m Λ n log n log x
76 72 75 eqtrd x 1 +∞ 2 log x n = 1 x R x n m y | y n Λ m Λ n m Λ n log n 2 = n = 1 x R x n m y | y n Λ m Λ n m Λ n log n log x
77 68 76 oveq12d x 1 +∞ 2 R x log x 2 2 log x n = 1 x R x n m y | y n Λ m Λ n m Λ n log n 2 = R x log x n = 1 x R x n m y | y n Λ m Λ n m Λ n log n log x
78 66 77 eqtrd x 1 +∞ 2 R x log x 2 log x n = 1 x R x n m y | y n Λ m Λ n m Λ n log n 2 = R x log x n = 1 x R x n m y | y n Λ m Λ n m Λ n log n log x
79 78 oveq1d x 1 +∞ 2 R x log x 2 log x n = 1 x R x n m y | y n Λ m Λ n m Λ n log n 2 x = R x log x n = 1 x R x n m y | y n Λ m Λ n m Λ n log n log x x
80 63 65 79 3eqtr3d x 1 +∞ 2 R x log x 2 log x n = 1 x R x n m y | y n Λ m Λ n m Λ n log n x 1 2 = R x log x n = 1 x R x n m y | y n Λ m Λ n m Λ n log n log x x
81 80 mpteq2dva x 1 +∞ 2 R x log x 2 log x n = 1 x R x n m y | y n Λ m Λ n m Λ n log n x 1 2 = x 1 +∞ R x log x n = 1 x R x n m y | y n Λ m Λ n m Λ n log n log x x
82 22 54 remulcld x 1 +∞ 2 log x n = 1 x R x n m y | y n Λ m Λ n m Λ n log n
83 19 82 resubcld x 1 +∞ 2 R x log x 2 log x n = 1 x R x n m y | y n Λ m Λ n m Λ n log n
84 83 13 rerpdivcld x 1 +∞ 2 R x log x 2 log x n = 1 x R x n m y | y n Λ m Λ n m Λ n log n x
85 8 rehalfcld x 1 +∞ 1 2
86 31 recnd x 1 +∞ n 1 x R x n
87 47 recnd x 1 +∞ n 1 x m y | y n Λ m Λ n m
88 49 recnd x 1 +∞ n 1 x Λ n
89 50 recnd x 1 +∞ n 1 x log n
90 88 89 mulcld x 1 +∞ n 1 x Λ n log n
91 86 87 90 subdid x 1 +∞ n 1 x R x n m y | y n Λ m Λ n m Λ n log n = R x n m y | y n Λ m Λ n m R x n Λ n log n
92 86 88 89 mul12d x 1 +∞ n 1 x R x n Λ n log n = Λ n R x n log n
93 88 86 89 mulassd x 1 +∞ n 1 x Λ n R x n log n = Λ n R x n log n
94 92 93 eqtr4d x 1 +∞ n 1 x R x n Λ n log n = Λ n R x n log n
95 94 oveq2d x 1 +∞ n 1 x R x n m y | y n Λ m Λ n m R x n Λ n log n = R x n m y | y n Λ m Λ n m Λ n R x n log n
96 91 95 eqtrd x 1 +∞ n 1 x R x n m y | y n Λ m Λ n m Λ n log n = R x n m y | y n Λ m Λ n m Λ n R x n log n
97 96 sumeq2dv x 1 +∞ n = 1 x R x n m y | y n Λ m Λ n m Λ n log n = n = 1 x R x n m y | y n Λ m Λ n m Λ n R x n log n
98 86 87 mulcld x 1 +∞ n 1 x R x n m y | y n Λ m Λ n m
99 88 86 mulcld x 1 +∞ n 1 x Λ n R x n
100 99 89 mulcld x 1 +∞ n 1 x Λ n R x n log n
101 24 98 100 fsumsub x 1 +∞ n = 1 x R x n m y | y n Λ m Λ n m Λ n R x n log n = n = 1 x R x n m y | y n Λ m Λ n m n = 1 x Λ n R x n log n
102 46 recnd x 1 +∞ n 1 x m y | y n Λ m Λ n m
103 35 86 102 fsummulc2 x 1 +∞ n 1 x R x n m y | y n Λ m Λ n m = m y | y n R x n Λ m Λ n m
104 103 sumeq2dv x 1 +∞ n = 1 x R x n m y | y n Λ m Λ n m = n = 1 x m y | y n R x n Λ m Λ n m
105 oveq2 n = m k x n = x m k
106 105 fveq2d n = m k R x n = R x m k
107 fvoveq1 n = m k Λ n m = Λ m k m
108 107 oveq2d n = m k Λ m Λ n m = Λ m Λ m k m
109 106 108 oveq12d n = m k R x n Λ m Λ n m = R x m k Λ m Λ m k m
110 31 adantrr x 1 +∞ n 1 x m y | y n R x n
111 40 anasss x 1 +∞ n 1 x m y | y n Λ m
112 45 anasss x 1 +∞ n 1 x m y | y n Λ n m
113 111 112 remulcld x 1 +∞ n 1 x m y | y n Λ m Λ n m
114 110 113 remulcld x 1 +∞ n 1 x m y | y n R x n Λ m Λ n m
115 114 recnd x 1 +∞ n 1 x m y | y n R x n Λ m Λ n m
116 109 5 115 dvdsflsumcom x 1 +∞ n = 1 x m y | y n R x n Λ m Λ n m = m = 1 x k = 1 x m R x m k Λ m Λ m k m
117 58 ad2antrr x 1 +∞ m 1 x k 1 x m x
118 elfznn m 1 x m
119 118 adantl x 1 +∞ m 1 x m
120 119 nnrpd x 1 +∞ m 1 x m +
121 120 adantr x 1 +∞ m 1 x k 1 x m m +
122 121 rpcnd x 1 +∞ m 1 x k 1 x m m
123 elfznn k 1 x m k
124 123 adantl x 1 +∞ m 1 x k 1 x m k
125 124 nncnd x 1 +∞ m 1 x k 1 x m k
126 121 rpne0d x 1 +∞ m 1 x k 1 x m m 0
127 124 nnne0d x 1 +∞ m 1 x k 1 x m k 0
128 117 122 125 126 127 divdiv1d x 1 +∞ m 1 x k 1 x m x m k = x m k
129 128 eqcomd x 1 +∞ m 1 x k 1 x m x m k = x m k
130 129 fveq2d x 1 +∞ m 1 x k 1 x m R x m k = R x m k
131 125 122 126 divcan3d x 1 +∞ m 1 x k 1 x m m k m = k
132 131 fveq2d x 1 +∞ m 1 x k 1 x m Λ m k m = Λ k
133 132 oveq2d x 1 +∞ m 1 x k 1 x m Λ m Λ m k m = Λ m Λ k
134 130 133 oveq12d x 1 +∞ m 1 x k 1 x m R x m k Λ m Λ m k m = R x m k Λ m Λ k
135 13 ad2antrr x 1 +∞ m 1 x k 1 x m x +
136 135 121 rpdivcld x 1 +∞ m 1 x k 1 x m x m +
137 124 nnrpd x 1 +∞ m 1 x k 1 x m k +
138 136 137 rpdivcld x 1 +∞ m 1 x k 1 x m x m k +
139 14 ffvelrni x m k + R x m k
140 138 139 syl x 1 +∞ m 1 x k 1 x m R x m k
141 140 recnd x 1 +∞ m 1 x k 1 x m R x m k
142 119 39 syl x 1 +∞ m 1 x Λ m
143 142 recnd x 1 +∞ m 1 x Λ m
144 143 adantr x 1 +∞ m 1 x k 1 x m Λ m
145 vmacl k Λ k
146 124 145 syl x 1 +∞ m 1 x k 1 x m Λ k
147 146 recnd x 1 +∞ m 1 x k 1 x m Λ k
148 144 147 mulcld x 1 +∞ m 1 x k 1 x m Λ m Λ k
149 141 148 mulcomd x 1 +∞ m 1 x k 1 x m R x m k Λ m Λ k = Λ m Λ k R x m k
150 144 147 141 mulassd x 1 +∞ m 1 x k 1 x m Λ m Λ k R x m k = Λ m Λ k R x m k
151 134 149 150 3eqtrd x 1 +∞ m 1 x k 1 x m R x m k Λ m Λ m k m = Λ m Λ k R x m k
152 151 sumeq2dv x 1 +∞ m 1 x k = 1 x m R x m k Λ m Λ m k m = k = 1 x m Λ m Λ k R x m k
153 fzfid x 1 +∞ m 1 x 1 x m Fin
154 146 140 remulcld x 1 +∞ m 1 x k 1 x m Λ k R x m k
155 154 recnd x 1 +∞ m 1 x k 1 x m Λ k R x m k
156 153 143 155 fsummulc2 x 1 +∞ m 1 x Λ m k = 1 x m Λ k R x m k = k = 1 x m Λ m Λ k R x m k
157 152 156 eqtr4d x 1 +∞ m 1 x k = 1 x m R x m k Λ m Λ m k m = Λ m k = 1 x m Λ k R x m k
158 157 sumeq2dv x 1 +∞ m = 1 x k = 1 x m R x m k Λ m Λ m k m = m = 1 x Λ m k = 1 x m Λ k R x m k
159 104 116 158 3eqtrd x 1 +∞ n = 1 x R x n m y | y n Λ m Λ n m = m = 1 x Λ m k = 1 x m Λ k R x m k
160 159 oveq1d x 1 +∞ n = 1 x R x n m y | y n Λ m Λ n m n = 1 x Λ n R x n log n = m = 1 x Λ m k = 1 x m Λ k R x m k n = 1 x Λ n R x n log n
161 97 101 160 3eqtrd x 1 +∞ n = 1 x R x n m y | y n Λ m Λ n m Λ n log n = m = 1 x Λ m k = 1 x m Λ k R x m k n = 1 x Λ n R x n log n
162 161 oveq2d x 1 +∞ 2 log x n = 1 x R x n m y | y n Λ m Λ n m Λ n log n = 2 log x m = 1 x Λ m k = 1 x m Λ k R x m k n = 1 x Λ n R x n log n
163 153 154 fsumrecl x 1 +∞ m 1 x k = 1 x m Λ k R x m k
164 142 163 remulcld x 1 +∞ m 1 x Λ m k = 1 x m Λ k R x m k
165 24 164 fsumrecl x 1 +∞ m = 1 x Λ m k = 1 x m Λ k R x m k
166 165 recnd x 1 +∞ m = 1 x Λ m k = 1 x m Λ k R x m k
167 49 31 remulcld x 1 +∞ n 1 x Λ n R x n
168 167 50 remulcld x 1 +∞ n 1 x Λ n R x n log n
169 24 168 fsumrecl x 1 +∞ n = 1 x Λ n R x n log n
170 169 recnd x 1 +∞ n = 1 x Λ n R x n log n
171 23 166 170 subdid x 1 +∞ 2 log x m = 1 x Λ m k = 1 x m Λ k R x m k n = 1 x Λ n R x n log n = 2 log x m = 1 x Λ m k = 1 x m Λ k R x m k 2 log x n = 1 x Λ n R x n log n
172 162 171 eqtrd x 1 +∞ 2 log x n = 1 x R x n m y | y n Λ m Λ n m Λ n log n = 2 log x m = 1 x Λ m k = 1 x m Λ k R x m k 2 log x n = 1 x Λ n R x n log n
173 172 oveq2d x 1 +∞ 2 R x log x 2 log x n = 1 x R x n m y | y n Λ m Λ n m Λ n log n = 2 R x log x 2 log x m = 1 x Λ m k = 1 x m Λ k R x m k 2 log x n = 1 x Λ n R x n log n
174 23 166 mulcld x 1 +∞ 2 log x m = 1 x Λ m k = 1 x m Λ k R x m k
175 22 169 remulcld x 1 +∞ 2 log x n = 1 x Λ n R x n log n
176 175 recnd x 1 +∞ 2 log x n = 1 x Λ n R x n log n
177 20 174 176 subsub3d x 1 +∞ 2 R x log x 2 log x m = 1 x Λ m k = 1 x m Λ k R x m k 2 log x n = 1 x Λ n R x n log n = 2 R x log x + 2 log x n = 1 x Λ n R x n log n - 2 log x m = 1 x Λ m k = 1 x m Λ k R x m k
178 173 177 eqtrd x 1 +∞ 2 R x log x 2 log x n = 1 x R x n m y | y n Λ m Λ n m Λ n log n = 2 R x log x + 2 log x n = 1 x Λ n R x n log n - 2 log x m = 1 x Λ m k = 1 x m Λ k R x m k
179 67 2timesd x 1 +∞ 2 R x log x = R x log x + R x log x
180 179 oveq1d x 1 +∞ 2 R x log x + 2 log x n = 1 x Λ n R x n log n = R x log x + R x log x + 2 log x n = 1 x Λ n R x n log n
181 67 176 67 add32d x 1 +∞ R x log x + 2 log x n = 1 x Λ n R x n log n + R x log x = R x log x + R x log x + 2 log x n = 1 x Λ n R x n log n
182 180 181 eqtr4d x 1 +∞ 2 R x log x + 2 log x n = 1 x Λ n R x n log n = R x log x + 2 log x n = 1 x Λ n R x n log n + R x log x
183 182 oveq1d x 1 +∞ 2 R x log x + 2 log x n = 1 x Λ n R x n log n - 2 log x m = 1 x Λ m k = 1 x m Λ k R x m k = R x log x + 2 log x n = 1 x Λ n R x n log n + R x log x - 2 log x m = 1 x Λ m k = 1 x m Λ k R x m k
184 18 175 readdcld x 1 +∞ R x log x + 2 log x n = 1 x Λ n R x n log n
185 184 recnd x 1 +∞ R x log x + 2 log x n = 1 x Λ n R x n log n
186 185 67 174 addsubassd x 1 +∞ R x log x + 2 log x n = 1 x Λ n R x n log n + R x log x - 2 log x m = 1 x Λ m k = 1 x m Λ k R x m k = R x log x + 2 log x n = 1 x Λ n R x n log n + R x log x 2 log x m = 1 x Λ m k = 1 x m Λ k R x m k
187 178 183 186 3eqtrd x 1 +∞ 2 R x log x 2 log x n = 1 x R x n m y | y n Λ m Λ n m Λ n log n = R x log x + 2 log x n = 1 x Λ n R x n log n + R x log x 2 log x m = 1 x Λ m k = 1 x m Λ k R x m k
188 187 oveq1d x 1 +∞ 2 R x log x 2 log x n = 1 x R x n m y | y n Λ m Λ n m Λ n log n x = R x log x + 2 log x n = 1 x Λ n R x n log n + R x log x 2 log x m = 1 x Λ m k = 1 x m Λ k R x m k x
189 67 174 subcld x 1 +∞ R x log x 2 log x m = 1 x Λ m k = 1 x m Λ k R x m k
190 185 189 58 60 divdird x 1 +∞ R x log x + 2 log x n = 1 x Λ n R x n log n + R x log x 2 log x m = 1 x Λ m k = 1 x m Λ k R x m k x = R x log x + 2 log x n = 1 x Λ n R x n log n x + R x log x 2 log x m = 1 x Λ m k = 1 x m Λ k R x m k x
191 188 190 eqtrd x 1 +∞ 2 R x log x 2 log x n = 1 x R x n m y | y n Λ m Λ n m Λ n log n x = R x log x + 2 log x n = 1 x Λ n R x n log n x + R x log x 2 log x m = 1 x Λ m k = 1 x m Λ k R x m k x
192 191 mpteq2dva x 1 +∞ 2 R x log x 2 log x n = 1 x R x n m y | y n Λ m Λ n m Λ n log n x = x 1 +∞ R x log x + 2 log x n = 1 x Λ n R x n log n x + R x log x 2 log x m = 1 x Λ m k = 1 x m Λ k R x m k x
193 184 13 rerpdivcld x 1 +∞ R x log x + 2 log x n = 1 x Λ n R x n log n x
194 22 165 remulcld x 1 +∞ 2 log x m = 1 x Λ m k = 1 x m Λ k R x m k
195 18 194 resubcld x 1 +∞ R x log x 2 log x m = 1 x Λ m k = 1 x m Λ k R x m k
196 195 13 rerpdivcld x 1 +∞ R x log x 2 log x m = 1 x Λ m k = 1 x m Λ k R x m k x
197 1 selberg3r x 1 +∞ R x log x + 2 log x n = 1 x Λ n R x n log n x 𝑂1
198 197 a1i x 1 +∞ R x log x + 2 log x n = 1 x Λ n R x n log n x 𝑂1
199 1 selberg4r x 1 +∞ R x log x 2 log x m = 1 x Λ m k = 1 x m Λ k R x m k x 𝑂1
200 199 a1i x 1 +∞ R x log x 2 log x m = 1 x Λ m k = 1 x m Λ k R x m k x 𝑂1
201 193 196 198 200 o1add2 x 1 +∞ R x log x + 2 log x n = 1 x Λ n R x n log n x + R x log x 2 log x m = 1 x Λ m k = 1 x m Λ k R x m k x 𝑂1
202 192 201 eqeltrd x 1 +∞ 2 R x log x 2 log x n = 1 x R x n m y | y n Λ m Λ n m Λ n log n x 𝑂1
203 ioossre 1 +∞
204 1cnd 1
205 204 halfcld 1 2
206 o1const 1 +∞ 1 2 x 1 +∞ 1 2 𝑂1
207 203 205 206 sylancr x 1 +∞ 1 2 𝑂1
208 84 85 202 207 o1mul2 x 1 +∞ 2 R x log x 2 log x n = 1 x R x n m y | y n Λ m Λ n m Λ n log n x 1 2 𝑂1
209 81 208 eqeltrrd x 1 +∞ R x log x n = 1 x R x n m y | y n Λ m Λ n m Λ n log n log x x 𝑂1
210 209 mptru x 1 +∞ R x log x n = 1 x R x n m y | y n Λ m Λ n m Λ n log n log x x 𝑂1