Step |
Hyp |
Ref |
Expression |
1 |
|
pntrval.r |
|
2 |
|
elioore |
|
3 |
2
|
adantl |
|
4 |
|
1rp |
|
5 |
4
|
a1i |
|
6 |
|
1red |
|
7 |
|
eliooord |
|
8 |
7
|
adantl |
|
9 |
8
|
simpld |
|
10 |
6 3 9
|
ltled |
|
11 |
3 5 10
|
rpgecld |
|
12 |
11
|
relogcld |
|
13 |
12
|
recnd |
|
14 |
13
|
2timesd |
|
15 |
14
|
oveq2d |
|
16 |
|
chpcl |
|
17 |
3 16
|
syl |
|
18 |
17 12
|
remulcld |
|
19 |
|
2re |
|
20 |
19
|
a1i |
|
21 |
3 9
|
rplogcld |
|
22 |
20 21
|
rerpdivcld |
|
23 |
|
fzfid |
|
24 |
|
elfznn |
|
25 |
24
|
adantl |
|
26 |
|
vmacl |
|
27 |
25 26
|
syl |
|
28 |
3
|
adantr |
|
29 |
28 25
|
nndivred |
|
30 |
|
chpcl |
|
31 |
29 30
|
syl |
|
32 |
27 31
|
remulcld |
|
33 |
25
|
nnrpd |
|
34 |
33
|
relogcld |
|
35 |
32 34
|
remulcld |
|
36 |
23 35
|
fsumrecl |
|
37 |
22 36
|
remulcld |
|
38 |
18 37
|
readdcld |
|
39 |
38 11
|
rerpdivcld |
|
40 |
39
|
recnd |
|
41 |
40 13 13
|
subsub4d |
|
42 |
15 41
|
eqtr4d |
|
43 |
42
|
oveq1d |
|
44 |
40 13
|
subcld |
|
45 |
|
2cn |
|
46 |
45
|
a1i |
|
47 |
21
|
rpne0d |
|
48 |
46 13 47
|
divcld |
|
49 |
27 25
|
nndivred |
|
50 |
49 34
|
remulcld |
|
51 |
23 50
|
fsumrecl |
|
52 |
51
|
recnd |
|
53 |
48 52
|
mulcld |
|
54 |
44 53 13
|
nnncan2d |
|
55 |
1
|
pntrf |
|
56 |
55
|
ffvelrni |
|
57 |
11 56
|
syl |
|
58 |
57
|
recnd |
|
59 |
58 13
|
mulcld |
|
60 |
37
|
recnd |
|
61 |
59 60
|
addcld |
|
62 |
3
|
recnd |
|
63 |
62 53
|
mulcld |
|
64 |
11
|
rpne0d |
|
65 |
61 63 62 64
|
divsubdird |
|
66 |
59 60 63
|
addsubassd |
|
67 |
36
|
recnd |
|
68 |
62 52
|
mulcld |
|
69 |
48 67 68
|
subdid |
|
70 |
50
|
recnd |
|
71 |
23 62 70
|
fsummulc2 |
|
72 |
71
|
oveq2d |
|
73 |
35
|
recnd |
|
74 |
62
|
adantr |
|
75 |
74 70
|
mulcld |
|
76 |
23 73 75
|
fsumsub |
|
77 |
72 76
|
eqtr4d |
|
78 |
27
|
recnd |
|
79 |
31
|
recnd |
|
80 |
34
|
recnd |
|
81 |
78 79 80
|
mul32d |
|
82 |
25
|
nncnd |
|
83 |
25
|
nnne0d |
|
84 |
78 80 82 83
|
div23d |
|
85 |
84
|
oveq2d |
|
86 |
78 80
|
mulcld |
|
87 |
74 86 82 83
|
div12d |
|
88 |
85 87
|
eqtr3d |
|
89 |
81 88
|
oveq12d |
|
90 |
11
|
adantr |
|
91 |
90 33
|
rpdivcld |
|
92 |
1
|
pntrval |
|
93 |
91 92
|
syl |
|
94 |
93
|
oveq2d |
|
95 |
29
|
recnd |
|
96 |
86 79 95
|
subdid |
|
97 |
94 96
|
eqtrd |
|
98 |
89 97
|
eqtr4d |
|
99 |
55
|
ffvelrni |
|
100 |
91 99
|
syl |
|
101 |
100
|
recnd |
|
102 |
78 101 80
|
mul32d |
|
103 |
98 102
|
eqtr4d |
|
104 |
103
|
sumeq2dv |
|
105 |
77 104
|
eqtrd |
|
106 |
105
|
oveq2d |
|
107 |
48 62 52
|
mul12d |
|
108 |
107
|
oveq2d |
|
109 |
69 106 108
|
3eqtr3rd |
|
110 |
109
|
oveq2d |
|
111 |
66 110
|
eqtrd |
|
112 |
111
|
oveq1d |
|
113 |
1
|
pntrval |
|
114 |
11 113
|
syl |
|
115 |
114
|
oveq1d |
|
116 |
17
|
recnd |
|
117 |
116 62 13
|
subdird |
|
118 |
115 117
|
eqtrd |
|
119 |
118
|
oveq1d |
|
120 |
18
|
recnd |
|
121 |
62 13
|
mulcld |
|
122 |
120 60 121
|
addsubd |
|
123 |
119 122
|
eqtr4d |
|
124 |
123
|
oveq1d |
|
125 |
38
|
recnd |
|
126 |
125 121 62 64
|
divsubdird |
|
127 |
13 62 64
|
divcan3d |
|
128 |
127
|
oveq2d |
|
129 |
126 128
|
eqtrd |
|
130 |
124 129
|
eqtrd |
|
131 |
53 62 64
|
divcan3d |
|
132 |
130 131
|
oveq12d |
|
133 |
65 112 132
|
3eqtr3rd |
|
134 |
43 54 133
|
3eqtrrd |
|
135 |
134
|
mpteq2dva |
|
136 |
20 12
|
remulcld |
|
137 |
39 136
|
resubcld |
|
138 |
22 51
|
remulcld |
|
139 |
138 12
|
resubcld |
|
140 |
|
selberg3 |
|
141 |
140
|
a1i |
|
142 |
20
|
recnd |
|
143 |
51 21
|
rerpdivcld |
|
144 |
143
|
recnd |
|
145 |
12
|
rehalfcld |
|
146 |
145
|
recnd |
|
147 |
142 144 146
|
subdid |
|
148 |
142 13 52 47
|
div32d |
|
149 |
148
|
eqcomd |
|
150 |
|
2ne0 |
|
151 |
150
|
a1i |
|
152 |
13 142 151
|
divcan2d |
|
153 |
149 152
|
oveq12d |
|
154 |
147 153
|
eqtrd |
|
155 |
154
|
mpteq2dva |
|
156 |
143 145
|
resubcld |
|
157 |
|
ioossre |
|
158 |
|
o1const |
|
159 |
157 45 158
|
mp2an |
|
160 |
159
|
a1i |
|
161 |
|
vmalogdivsum |
|
162 |
161
|
a1i |
|
163 |
20 156 160 162
|
o1mul2 |
|
164 |
155 163
|
eqeltrrd |
|
165 |
137 139 141 164
|
o1sub2 |
|
166 |
135 165
|
eqeltrd |
|
167 |
166
|
mptru |
|