Metamath Proof Explorer


Theorem selberg3r

Description: Selberg's symmetry formula, using the residual of the second Chebyshev function. Equation 10.6.8 of Shapiro, p. 429. (Contributed by Mario Carneiro, 30-May-2016)

Ref Expression
Hypothesis pntrval.r R = a + ψ a a
Assertion selberg3r x 1 +∞ R x log x + 2 log x n = 1 x Λ n R x n log n x 𝑂1

Proof

Step Hyp Ref Expression
1 pntrval.r R = a + ψ a a
2 elioore x 1 +∞ x
3 2 adantl x 1 +∞ x
4 1rp 1 +
5 4 a1i x 1 +∞ 1 +
6 1red x 1 +∞ 1
7 eliooord x 1 +∞ 1 < x x < +∞
8 7 adantl x 1 +∞ 1 < x x < +∞
9 8 simpld x 1 +∞ 1 < x
10 6 3 9 ltled x 1 +∞ 1 x
11 3 5 10 rpgecld x 1 +∞ x +
12 11 relogcld x 1 +∞ log x
13 12 recnd x 1 +∞ log x
14 13 2timesd x 1 +∞ 2 log x = log x + log x
15 14 oveq2d x 1 +∞ ψ x log x + 2 log x n = 1 x Λ n ψ x n log n x 2 log x = ψ x log x + 2 log x n = 1 x Λ n ψ x n log n x log x + log x
16 chpcl x ψ x
17 3 16 syl x 1 +∞ ψ x
18 17 12 remulcld x 1 +∞ ψ x log x
19 2re 2
20 19 a1i x 1 +∞ 2
21 3 9 rplogcld x 1 +∞ log x +
22 20 21 rerpdivcld x 1 +∞ 2 log x
23 fzfid x 1 +∞ 1 x Fin
24 elfznn n 1 x n
25 24 adantl x 1 +∞ n 1 x n
26 vmacl n Λ n
27 25 26 syl x 1 +∞ n 1 x Λ n
28 3 adantr x 1 +∞ n 1 x x
29 28 25 nndivred x 1 +∞ n 1 x x n
30 chpcl x n ψ x n
31 29 30 syl x 1 +∞ n 1 x ψ x n
32 27 31 remulcld x 1 +∞ n 1 x Λ n ψ x n
33 25 nnrpd x 1 +∞ n 1 x n +
34 33 relogcld x 1 +∞ n 1 x log n
35 32 34 remulcld x 1 +∞ n 1 x Λ n ψ x n log n
36 23 35 fsumrecl x 1 +∞ n = 1 x Λ n ψ x n log n
37 22 36 remulcld x 1 +∞ 2 log x n = 1 x Λ n ψ x n log n
38 18 37 readdcld x 1 +∞ ψ x log x + 2 log x n = 1 x Λ n ψ x n log n
39 38 11 rerpdivcld x 1 +∞ ψ x log x + 2 log x n = 1 x Λ n ψ x n log n x
40 39 recnd x 1 +∞ ψ x log x + 2 log x n = 1 x Λ n ψ x n log n x
41 40 13 13 subsub4d x 1 +∞ ψ x log x + 2 log x n = 1 x Λ n ψ x n log n x - log x - log x = ψ x log x + 2 log x n = 1 x Λ n ψ x n log n x log x + log x
42 15 41 eqtr4d x 1 +∞ ψ x log x + 2 log x n = 1 x Λ n ψ x n log n x 2 log x = ψ x log x + 2 log x n = 1 x Λ n ψ x n log n x - log x - log x
43 42 oveq1d x 1 +∞ ψ x log x + 2 log x n = 1 x Λ n ψ x n log n x - 2 log x - 2 log x n = 1 x Λ n n log n log x = ψ x log x + 2 log x n = 1 x Λ n ψ x n log n x log x - log x - 2 log x n = 1 x Λ n n log n log x
44 40 13 subcld x 1 +∞ ψ x log x + 2 log x n = 1 x Λ n ψ x n log n x log x
45 2cn 2
46 45 a1i x 1 +∞ 2
47 21 rpne0d x 1 +∞ log x 0
48 46 13 47 divcld x 1 +∞ 2 log x
49 27 25 nndivred x 1 +∞ n 1 x Λ n n
50 49 34 remulcld x 1 +∞ n 1 x Λ n n log n
51 23 50 fsumrecl x 1 +∞ n = 1 x Λ n n log n
52 51 recnd x 1 +∞ n = 1 x Λ n n log n
53 48 52 mulcld x 1 +∞ 2 log x n = 1 x Λ n n log n
54 44 53 13 nnncan2d x 1 +∞ ψ x log x + 2 log x n = 1 x Λ n ψ x n log n x log x - log x - 2 log x n = 1 x Λ n n log n log x = ψ x log x + 2 log x n = 1 x Λ n ψ x n log n x - log x - 2 log x n = 1 x Λ n n log n
55 1 pntrf R : +
56 55 ffvelrni x + R x
57 11 56 syl x 1 +∞ R x
58 57 recnd x 1 +∞ R x
59 58 13 mulcld x 1 +∞ R x log x
60 37 recnd x 1 +∞ 2 log x n = 1 x Λ n ψ x n log n
61 59 60 addcld x 1 +∞ R x log x + 2 log x n = 1 x Λ n ψ x n log n
62 3 recnd x 1 +∞ x
63 62 53 mulcld x 1 +∞ x 2 log x n = 1 x Λ n n log n
64 11 rpne0d x 1 +∞ x 0
65 61 63 62 64 divsubdird x 1 +∞ R x log x + 2 log x n = 1 x Λ n ψ x n log n - x 2 log x n = 1 x Λ n n log n x = R x log x + 2 log x n = 1 x Λ n ψ x n log n x x 2 log x n = 1 x Λ n n log n x
66 59 60 63 addsubassd x 1 +∞ R x log x + 2 log x n = 1 x Λ n ψ x n log n - x 2 log x n = 1 x Λ n n log n = R x log x + 2 log x n = 1 x Λ n ψ x n log n - x 2 log x n = 1 x Λ n n log n
67 36 recnd x 1 +∞ n = 1 x Λ n ψ x n log n
68 62 52 mulcld x 1 +∞ x n = 1 x Λ n n log n
69 48 67 68 subdid x 1 +∞ 2 log x n = 1 x Λ n ψ x n log n x n = 1 x Λ n n log n = 2 log x n = 1 x Λ n ψ x n log n 2 log x x n = 1 x Λ n n log n
70 50 recnd x 1 +∞ n 1 x Λ n n log n
71 23 62 70 fsummulc2 x 1 +∞ x n = 1 x Λ n n log n = n = 1 x x Λ n n log n
72 71 oveq2d x 1 +∞ n = 1 x Λ n ψ x n log n x n = 1 x Λ n n log n = n = 1 x Λ n ψ x n log n n = 1 x x Λ n n log n
73 35 recnd x 1 +∞ n 1 x Λ n ψ x n log n
74 62 adantr x 1 +∞ n 1 x x
75 74 70 mulcld x 1 +∞ n 1 x x Λ n n log n
76 23 73 75 fsumsub x 1 +∞ n = 1 x Λ n ψ x n log n x Λ n n log n = n = 1 x Λ n ψ x n log n n = 1 x x Λ n n log n
77 72 76 eqtr4d x 1 +∞ n = 1 x Λ n ψ x n log n x n = 1 x Λ n n log n = n = 1 x Λ n ψ x n log n x Λ n n log n
78 27 recnd x 1 +∞ n 1 x Λ n
79 31 recnd x 1 +∞ n 1 x ψ x n
80 34 recnd x 1 +∞ n 1 x log n
81 78 79 80 mul32d x 1 +∞ n 1 x Λ n ψ x n log n = Λ n log n ψ x n
82 25 nncnd x 1 +∞ n 1 x n
83 25 nnne0d x 1 +∞ n 1 x n 0
84 78 80 82 83 div23d x 1 +∞ n 1 x Λ n log n n = Λ n n log n
85 84 oveq2d x 1 +∞ n 1 x x Λ n log n n = x Λ n n log n
86 78 80 mulcld x 1 +∞ n 1 x Λ n log n
87 74 86 82 83 div12d x 1 +∞ n 1 x x Λ n log n n = Λ n log n x n
88 85 87 eqtr3d x 1 +∞ n 1 x x Λ n n log n = Λ n log n x n
89 81 88 oveq12d x 1 +∞ n 1 x Λ n ψ x n log n x Λ n n log n = Λ n log n ψ x n Λ n log n x n
90 11 adantr x 1 +∞ n 1 x x +
91 90 33 rpdivcld x 1 +∞ n 1 x x n +
92 1 pntrval x n + R x n = ψ x n x n
93 91 92 syl x 1 +∞ n 1 x R x n = ψ x n x n
94 93 oveq2d x 1 +∞ n 1 x Λ n log n R x n = Λ n log n ψ x n x n
95 29 recnd x 1 +∞ n 1 x x n
96 86 79 95 subdid x 1 +∞ n 1 x Λ n log n ψ x n x n = Λ n log n ψ x n Λ n log n x n
97 94 96 eqtrd x 1 +∞ n 1 x Λ n log n R x n = Λ n log n ψ x n Λ n log n x n
98 89 97 eqtr4d x 1 +∞ n 1 x Λ n ψ x n log n x Λ n n log n = Λ n log n R x n
99 55 ffvelrni x n + R x n
100 91 99 syl x 1 +∞ n 1 x R x n
101 100 recnd x 1 +∞ n 1 x R x n
102 78 101 80 mul32d x 1 +∞ n 1 x Λ n R x n log n = Λ n log n R x n
103 98 102 eqtr4d x 1 +∞ n 1 x Λ n ψ x n log n x Λ n n log n = Λ n R x n log n
104 103 sumeq2dv x 1 +∞ n = 1 x Λ n ψ x n log n x Λ n n log n = n = 1 x Λ n R x n log n
105 77 104 eqtrd x 1 +∞ n = 1 x Λ n ψ x n log n x n = 1 x Λ n n log n = n = 1 x Λ n R x n log n
106 105 oveq2d x 1 +∞ 2 log x n = 1 x Λ n ψ x n log n x n = 1 x Λ n n log n = 2 log x n = 1 x Λ n R x n log n
107 48 62 52 mul12d x 1 +∞ 2 log x x n = 1 x Λ n n log n = x 2 log x n = 1 x Λ n n log n
108 107 oveq2d x 1 +∞ 2 log x n = 1 x Λ n ψ x n log n 2 log x x n = 1 x Λ n n log n = 2 log x n = 1 x Λ n ψ x n log n x 2 log x n = 1 x Λ n n log n
109 69 106 108 3eqtr3rd x 1 +∞ 2 log x n = 1 x Λ n ψ x n log n x 2 log x n = 1 x Λ n n log n = 2 log x n = 1 x Λ n R x n log n
110 109 oveq2d x 1 +∞ R x log x + 2 log x n = 1 x Λ n ψ x n log n - x 2 log x n = 1 x Λ n n log n = R x log x + 2 log x n = 1 x Λ n R x n log n
111 66 110 eqtrd x 1 +∞ R x log x + 2 log x n = 1 x Λ n ψ x n log n - x 2 log x n = 1 x Λ n n log n = R x log x + 2 log x n = 1 x Λ n R x n log n
112 111 oveq1d x 1 +∞ R x log x + 2 log x n = 1 x Λ n ψ x n log n - x 2 log x n = 1 x Λ n n log n x = R x log x + 2 log x n = 1 x Λ n R x n log n x
113 1 pntrval x + R x = ψ x x
114 11 113 syl x 1 +∞ R x = ψ x x
115 114 oveq1d x 1 +∞ R x log x = ψ x x log x
116 17 recnd x 1 +∞ ψ x
117 116 62 13 subdird x 1 +∞ ψ x x log x = ψ x log x x log x
118 115 117 eqtrd x 1 +∞ R x log x = ψ x log x x log x
119 118 oveq1d x 1 +∞ R x log x + 2 log x n = 1 x Λ n ψ x n log n = ψ x log x - x log x + 2 log x n = 1 x Λ n ψ x n log n
120 18 recnd x 1 +∞ ψ x log x
121 62 13 mulcld x 1 +∞ x log x
122 120 60 121 addsubd x 1 +∞ ψ x log x + 2 log x n = 1 x Λ n ψ x n log n - x log x = ψ x log x - x log x + 2 log x n = 1 x Λ n ψ x n log n
123 119 122 eqtr4d x 1 +∞ R x log x + 2 log x n = 1 x Λ n ψ x n log n = ψ x log x + 2 log x n = 1 x Λ n ψ x n log n - x log x
124 123 oveq1d x 1 +∞ R x log x + 2 log x n = 1 x Λ n ψ x n log n x = ψ x log x + 2 log x n = 1 x Λ n ψ x n log n - x log x x
125 38 recnd x 1 +∞ ψ x log x + 2 log x n = 1 x Λ n ψ x n log n
126 125 121 62 64 divsubdird x 1 +∞ ψ x log x + 2 log x n = 1 x Λ n ψ x n log n - x log x x = ψ x log x + 2 log x n = 1 x Λ n ψ x n log n x x log x x
127 13 62 64 divcan3d x 1 +∞ x log x x = log x
128 127 oveq2d x 1 +∞ ψ x log x + 2 log x n = 1 x Λ n ψ x n log n x x log x x = ψ x log x + 2 log x n = 1 x Λ n ψ x n log n x log x
129 126 128 eqtrd x 1 +∞ ψ x log x + 2 log x n = 1 x Λ n ψ x n log n - x log x x = ψ x log x + 2 log x n = 1 x Λ n ψ x n log n x log x
130 124 129 eqtrd x 1 +∞ R x log x + 2 log x n = 1 x Λ n ψ x n log n x = ψ x log x + 2 log x n = 1 x Λ n ψ x n log n x log x
131 53 62 64 divcan3d x 1 +∞ x 2 log x n = 1 x Λ n n log n x = 2 log x n = 1 x Λ n n log n
132 130 131 oveq12d x 1 +∞ R x log x + 2 log x n = 1 x Λ n ψ x n log n x x 2 log x n = 1 x Λ n n log n x = ψ x log x + 2 log x n = 1 x Λ n ψ x n log n x - log x - 2 log x n = 1 x Λ n n log n
133 65 112 132 3eqtr3rd x 1 +∞ ψ x log x + 2 log x n = 1 x Λ n ψ x n log n x - log x - 2 log x n = 1 x Λ n n log n = R x log x + 2 log x n = 1 x Λ n R x n log n x
134 43 54 133 3eqtrrd x 1 +∞ R x log x + 2 log x n = 1 x Λ n R x n log n x = ψ x log x + 2 log x n = 1 x Λ n ψ x n log n x - 2 log x - 2 log x n = 1 x Λ n n log n log x
135 134 mpteq2dva x 1 +∞ R x log x + 2 log x n = 1 x Λ n R x n log n x = x 1 +∞ ψ x log x + 2 log x n = 1 x Λ n ψ x n log n x - 2 log x - 2 log x n = 1 x Λ n n log n log x
136 20 12 remulcld x 1 +∞ 2 log x
137 39 136 resubcld x 1 +∞ ψ x log x + 2 log x n = 1 x Λ n ψ x n log n x 2 log x
138 22 51 remulcld x 1 +∞ 2 log x n = 1 x Λ n n log n
139 138 12 resubcld x 1 +∞ 2 log x n = 1 x Λ n n log n log x
140 selberg3 x 1 +∞ ψ x log x + 2 log x n = 1 x Λ n ψ x n log n x 2 log x 𝑂1
141 140 a1i x 1 +∞ ψ x log x + 2 log x n = 1 x Λ n ψ x n log n x 2 log x 𝑂1
142 20 recnd x 1 +∞ 2
143 51 21 rerpdivcld x 1 +∞ n = 1 x Λ n n log n log x
144 143 recnd x 1 +∞ n = 1 x Λ n n log n log x
145 12 rehalfcld x 1 +∞ log x 2
146 145 recnd x 1 +∞ log x 2
147 142 144 146 subdid x 1 +∞ 2 n = 1 x Λ n n log n log x log x 2 = 2 n = 1 x Λ n n log n log x 2 log x 2
148 142 13 52 47 div32d x 1 +∞ 2 log x n = 1 x Λ n n log n = 2 n = 1 x Λ n n log n log x
149 148 eqcomd x 1 +∞ 2 n = 1 x Λ n n log n log x = 2 log x n = 1 x Λ n n log n
150 2ne0 2 0
151 150 a1i x 1 +∞ 2 0
152 13 142 151 divcan2d x 1 +∞ 2 log x 2 = log x
153 149 152 oveq12d x 1 +∞ 2 n = 1 x Λ n n log n log x 2 log x 2 = 2 log x n = 1 x Λ n n log n log x
154 147 153 eqtrd x 1 +∞ 2 n = 1 x Λ n n log n log x log x 2 = 2 log x n = 1 x Λ n n log n log x
155 154 mpteq2dva x 1 +∞ 2 n = 1 x Λ n n log n log x log x 2 = x 1 +∞ 2 log x n = 1 x Λ n n log n log x
156 143 145 resubcld x 1 +∞ n = 1 x Λ n n log n log x log x 2
157 ioossre 1 +∞
158 o1const 1 +∞ 2 x 1 +∞ 2 𝑂1
159 157 45 158 mp2an x 1 +∞ 2 𝑂1
160 159 a1i x 1 +∞ 2 𝑂1
161 vmalogdivsum x 1 +∞ n = 1 x Λ n n log n log x log x 2 𝑂1
162 161 a1i x 1 +∞ n = 1 x Λ n n log n log x log x 2 𝑂1
163 20 156 160 162 o1mul2 x 1 +∞ 2 n = 1 x Λ n n log n log x log x 2 𝑂1
164 155 163 eqeltrrd x 1 +∞ 2 log x n = 1 x Λ n n log n log x 𝑂1
165 137 139 141 164 o1sub2 x 1 +∞ ψ x log x + 2 log x n = 1 x Λ n ψ x n log n x - 2 log x - 2 log x n = 1 x Λ n n log n log x 𝑂1
166 135 165 eqeltrd x 1 +∞ R x log x + 2 log x n = 1 x Λ n R x n log n x 𝑂1
167 166 mptru x 1 +∞ R x log x + 2 log x n = 1 x Λ n R x n log n x 𝑂1