Metamath Proof Explorer


Theorem selberg4

Description: The Selberg symmetry formula for products of three primes, instead of two. The sum here can also be written in the symmetric form sum_ i j k <_ x , Lam ( i ) Lam ( j ) Lam ( k ) ; we eliminate one of the nested sums by using the definition of psi ( x ) = sum_ k <_ x , Lam ( k ) . This statement can thus equivalently be written psi ( x ) log ^ 2 ( x ) = 2 sum_ i j k <_ x , Lam ( i ) Lam ( j ) Lam ( k ) + O ( x log x ) . Equation 10.4.23 of Shapiro, p. 422. (Contributed by Mario Carneiro, 30-May-2016)

Ref Expression
Assertion selberg4 x 1 +∞ ψ x log x 2 log x n = 1 x Λ n m = 1 x n Λ m ψ x n m x 𝑂1

Proof

Step Hyp Ref Expression
1 2re 2
2 1 a1i x 1 +∞ 2
3 elioore x 1 +∞ x
4 3 adantl x 1 +∞ x
5 eliooord x 1 +∞ 1 < x x < +∞
6 5 adantl x 1 +∞ 1 < x x < +∞
7 6 simpld x 1 +∞ 1 < x
8 4 7 rplogcld x 1 +∞ log x +
9 2 8 rerpdivcld x 1 +∞ 2 log x
10 fzfid x 1 +∞ 1 x Fin
11 elfznn m 1 x m
12 11 adantl x 1 +∞ m 1 x m
13 vmacl m Λ m
14 12 13 syl x 1 +∞ m 1 x Λ m
15 4 adantr x 1 +∞ m 1 x x
16 15 12 nndivred x 1 +∞ m 1 x x m
17 chpcl x m ψ x m
18 16 17 syl x 1 +∞ m 1 x ψ x m
19 14 18 remulcld x 1 +∞ m 1 x Λ m ψ x m
20 12 nnrpd x 1 +∞ m 1 x m +
21 20 relogcld x 1 +∞ m 1 x log m
22 19 21 remulcld x 1 +∞ m 1 x Λ m ψ x m log m
23 10 22 fsumrecl x 1 +∞ m = 1 x Λ m ψ x m log m
24 9 23 remulcld x 1 +∞ 2 log x m = 1 x Λ m ψ x m log m
25 10 19 fsumrecl x 1 +∞ m = 1 x Λ m ψ x m
26 24 25 resubcld x 1 +∞ 2 log x m = 1 x Λ m ψ x m log m m = 1 x Λ m ψ x m
27 1rp 1 +
28 27 a1i x 1 +∞ 1 +
29 1red x 1 +∞ 1
30 29 4 7 ltled x 1 +∞ 1 x
31 4 28 30 rpgecld x 1 +∞ x +
32 26 31 rerpdivcld x 1 +∞ 2 log x m = 1 x Λ m ψ x m log m m = 1 x Λ m ψ x m x
33 32 recnd x 1 +∞ 2 log x m = 1 x Λ m ψ x m log m m = 1 x Λ m ψ x m x
34 chpcl x ψ x
35 4 34 syl x 1 +∞ ψ x
36 31 relogcld x 1 +∞ log x
37 35 36 remulcld x 1 +∞ ψ x log x
38 37 25 readdcld x 1 +∞ ψ x log x + m = 1 x Λ m ψ x m
39 38 31 rerpdivcld x 1 +∞ ψ x log x + m = 1 x Λ m ψ x m x
40 39 recnd x 1 +∞ ψ x log x + m = 1 x Λ m ψ x m x
41 2 36 remulcld x 1 +∞ 2 log x
42 41 recnd x 1 +∞ 2 log x
43 33 40 42 addsubassd x 1 +∞ 2 log x m = 1 x Λ m ψ x m log m m = 1 x Λ m ψ x m x + ψ x log x + m = 1 x Λ m ψ x m x - 2 log x = 2 log x m = 1 x Λ m ψ x m log m m = 1 x Λ m ψ x m x + ψ x log x + m = 1 x Λ m ψ x m x - 2 log x
44 26 recnd x 1 +∞ 2 log x m = 1 x Λ m ψ x m log m m = 1 x Λ m ψ x m
45 38 recnd x 1 +∞ ψ x log x + m = 1 x Λ m ψ x m
46 4 recnd x 1 +∞ x
47 31 rpne0d x 1 +∞ x 0
48 44 45 46 47 divdird x 1 +∞ 2 log x m = 1 x Λ m ψ x m log m m = 1 x Λ m ψ x m + ψ x log x + m = 1 x Λ m ψ x m x = 2 log x m = 1 x Λ m ψ x m log m m = 1 x Λ m ψ x m x + ψ x log x + m = 1 x Λ m ψ x m x
49 24 recnd x 1 +∞ 2 log x m = 1 x Λ m ψ x m log m
50 25 recnd x 1 +∞ m = 1 x Λ m ψ x m
51 37 recnd x 1 +∞ ψ x log x
52 49 50 51 nppcan3d x 1 +∞ 2 log x m = 1 x Λ m ψ x m log m m = 1 x Λ m ψ x m + ψ x log x + m = 1 x Λ m ψ x m = 2 log x m = 1 x Λ m ψ x m log m + ψ x log x
53 elfznn n 1 x m n
54 53 ad2antll x 1 +∞ m 1 x n 1 x m n
55 vmacl n Λ n
56 54 55 syl x 1 +∞ m 1 x n 1 x m Λ n
57 14 adantrr x 1 +∞ m 1 x n 1 x m Λ m
58 20 adantrr x 1 +∞ m 1 x n 1 x m m +
59 58 relogcld x 1 +∞ m 1 x n 1 x m log m
60 57 59 remulcld x 1 +∞ m 1 x n 1 x m Λ m log m
61 56 60 remulcld x 1 +∞ m 1 x n 1 x m Λ n Λ m log m
62 61 recnd x 1 +∞ m 1 x n 1 x m Λ n Λ m log m
63 4 62 fsumfldivdiag x 1 +∞ m = 1 x n = 1 x m Λ n Λ m log m = n = 1 x m = 1 x n Λ n Λ m log m
64 14 recnd x 1 +∞ m 1 x Λ m
65 18 recnd x 1 +∞ m 1 x ψ x m
66 21 recnd x 1 +∞ m 1 x log m
67 64 65 66 mul32d x 1 +∞ m 1 x Λ m ψ x m log m = Λ m log m ψ x m
68 64 66 mulcld x 1 +∞ m 1 x Λ m log m
69 68 65 mulcomd x 1 +∞ m 1 x Λ m log m ψ x m = ψ x m Λ m log m
70 chpval x m ψ x m = n = 1 x m Λ n
71 16 70 syl x 1 +∞ m 1 x ψ x m = n = 1 x m Λ n
72 71 oveq1d x 1 +∞ m 1 x ψ x m Λ m log m = n = 1 x m Λ n Λ m log m
73 fzfid x 1 +∞ m 1 x 1 x m Fin
74 56 anassrs x 1 +∞ m 1 x n 1 x m Λ n
75 74 recnd x 1 +∞ m 1 x n 1 x m Λ n
76 73 68 75 fsummulc1 x 1 +∞ m 1 x n = 1 x m Λ n Λ m log m = n = 1 x m Λ n Λ m log m
77 72 76 eqtrd x 1 +∞ m 1 x ψ x m Λ m log m = n = 1 x m Λ n Λ m log m
78 67 69 77 3eqtrd x 1 +∞ m 1 x Λ m ψ x m log m = n = 1 x m Λ n Λ m log m
79 78 sumeq2dv x 1 +∞ m = 1 x Λ m ψ x m log m = m = 1 x n = 1 x m Λ n Λ m log m
80 fzfid x 1 +∞ n 1 x 1 x n Fin
81 elfznn n 1 x n
82 81 adantl x 1 +∞ n 1 x n
83 82 55 syl x 1 +∞ n 1 x Λ n
84 83 recnd x 1 +∞ n 1 x Λ n
85 elfznn m 1 x n m
86 85 adantl x 1 +∞ n 1 x m 1 x n m
87 86 13 syl x 1 +∞ n 1 x m 1 x n Λ m
88 86 nnrpd x 1 +∞ n 1 x m 1 x n m +
89 88 relogcld x 1 +∞ n 1 x m 1 x n log m
90 87 89 remulcld x 1 +∞ n 1 x m 1 x n Λ m log m
91 90 recnd x 1 +∞ n 1 x m 1 x n Λ m log m
92 80 84 91 fsummulc2 x 1 +∞ n 1 x Λ n m = 1 x n Λ m log m = m = 1 x n Λ n Λ m log m
93 92 sumeq2dv x 1 +∞ n = 1 x Λ n m = 1 x n Λ m log m = n = 1 x m = 1 x n Λ n Λ m log m
94 63 79 93 3eqtr4d x 1 +∞ m = 1 x Λ m ψ x m log m = n = 1 x Λ n m = 1 x n Λ m log m
95 94 oveq2d x 1 +∞ 2 log x m = 1 x Λ m ψ x m log m = 2 log x n = 1 x Λ n m = 1 x n Λ m log m
96 95 oveq1d x 1 +∞ 2 log x m = 1 x Λ m ψ x m log m + ψ x log x = 2 log x n = 1 x Λ n m = 1 x n Λ m log m + ψ x log x
97 52 96 eqtrd x 1 +∞ 2 log x m = 1 x Λ m ψ x m log m m = 1 x Λ m ψ x m + ψ x log x + m = 1 x Λ m ψ x m = 2 log x n = 1 x Λ n m = 1 x n Λ m log m + ψ x log x
98 97 oveq1d x 1 +∞ 2 log x m = 1 x Λ m ψ x m log m m = 1 x Λ m ψ x m + ψ x log x + m = 1 x Λ m ψ x m x = 2 log x n = 1 x Λ n m = 1 x n Λ m log m + ψ x log x x
99 48 98 eqtr3d x 1 +∞ 2 log x m = 1 x Λ m ψ x m log m m = 1 x Λ m ψ x m x + ψ x log x + m = 1 x Λ m ψ x m x = 2 log x n = 1 x Λ n m = 1 x n Λ m log m + ψ x log x x
100 99 oveq1d x 1 +∞ 2 log x m = 1 x Λ m ψ x m log m m = 1 x Λ m ψ x m x + ψ x log x + m = 1 x Λ m ψ x m x - 2 log x = 2 log x n = 1 x Λ n m = 1 x n Λ m log m + ψ x log x x 2 log x
101 43 100 eqtr3d x 1 +∞ 2 log x m = 1 x Λ m ψ x m log m m = 1 x Λ m ψ x m x + ψ x log x + m = 1 x Λ m ψ x m x - 2 log x = 2 log x n = 1 x Λ n m = 1 x n Λ m log m + ψ x log x x 2 log x
102 101 mpteq2dva x 1 +∞ 2 log x m = 1 x Λ m ψ x m log m m = 1 x Λ m ψ x m x + ψ x log x + m = 1 x Λ m ψ x m x - 2 log x = x 1 +∞ 2 log x n = 1 x Λ n m = 1 x n Λ m log m + ψ x log x x 2 log x
103 39 41 resubcld x 1 +∞ ψ x log x + m = 1 x Λ m ψ x m x 2 log x
104 selberg3lem2 x 1 +∞ 2 log x m = 1 x Λ m ψ x m log m m = 1 x Λ m ψ x m x 𝑂1
105 104 a1i x 1 +∞ 2 log x m = 1 x Λ m ψ x m log m m = 1 x Λ m ψ x m x 𝑂1
106 31 ex x 1 +∞ x +
107 106 ssrdv 1 +∞ +
108 selberg2 x + ψ x log x + m = 1 x Λ m ψ x m x 2 log x 𝑂1
109 108 a1i x + ψ x log x + m = 1 x Λ m ψ x m x 2 log x 𝑂1
110 107 109 o1res2 x 1 +∞ ψ x log x + m = 1 x Λ m ψ x m x 2 log x 𝑂1
111 32 103 105 110 o1add2 x 1 +∞ 2 log x m = 1 x Λ m ψ x m log m m = 1 x Λ m ψ x m x + ψ x log x + m = 1 x Λ m ψ x m x - 2 log x 𝑂1
112 102 111 eqeltrrd x 1 +∞ 2 log x n = 1 x Λ n m = 1 x n Λ m log m + ψ x log x x 2 log x 𝑂1
113 80 90 fsumrecl x 1 +∞ n 1 x m = 1 x n Λ m log m
114 83 113 remulcld x 1 +∞ n 1 x Λ n m = 1 x n Λ m log m
115 10 114 fsumrecl x 1 +∞ n = 1 x Λ n m = 1 x n Λ m log m
116 9 115 remulcld x 1 +∞ 2 log x n = 1 x Λ n m = 1 x n Λ m log m
117 116 37 readdcld x 1 +∞ 2 log x n = 1 x Λ n m = 1 x n Λ m log m + ψ x log x
118 117 31 rerpdivcld x 1 +∞ 2 log x n = 1 x Λ n m = 1 x n Λ m log m + ψ x log x x
119 118 41 resubcld x 1 +∞ 2 log x n = 1 x Λ n m = 1 x n Λ m log m + ψ x log x x 2 log x
120 119 recnd x 1 +∞ 2 log x n = 1 x Λ n m = 1 x n Λ m log m + ψ x log x x 2 log x
121 4 adantr x 1 +∞ n 1 x x
122 121 82 nndivred x 1 +∞ n 1 x x n
123 122 adantr x 1 +∞ n 1 x m 1 x n x n
124 123 86 nndivred x 1 +∞ n 1 x m 1 x n x n m
125 chpcl x n m ψ x n m
126 124 125 syl x 1 +∞ n 1 x m 1 x n ψ x n m
127 87 126 remulcld x 1 +∞ n 1 x m 1 x n Λ m ψ x n m
128 80 127 fsumrecl x 1 +∞ n 1 x m = 1 x n Λ m ψ x n m
129 83 128 remulcld x 1 +∞ n 1 x Λ n m = 1 x n Λ m ψ x n m
130 10 129 fsumrecl x 1 +∞ n = 1 x Λ n m = 1 x n Λ m ψ x n m
131 9 130 remulcld x 1 +∞ 2 log x n = 1 x Λ n m = 1 x n Λ m ψ x n m
132 37 131 resubcld x 1 +∞ ψ x log x 2 log x n = 1 x Λ n m = 1 x n Λ m ψ x n m
133 132 31 rerpdivcld x 1 +∞ ψ x log x 2 log x n = 1 x Λ n m = 1 x n Λ m ψ x n m x
134 133 recnd x 1 +∞ ψ x log x 2 log x n = 1 x Λ n m = 1 x n Λ m ψ x n m x
135 116 recnd x 1 +∞ 2 log x n = 1 x Λ n m = 1 x n Λ m log m
136 131 recnd x 1 +∞ 2 log x n = 1 x Λ n m = 1 x n Λ m ψ x n m
137 51 135 136 pnncand x 1 +∞ ψ x log x + 2 log x n = 1 x Λ n m = 1 x n Λ m log m - ψ x log x 2 log x n = 1 x Λ n m = 1 x n Λ m ψ x n m = 2 log x n = 1 x Λ n m = 1 x n Λ m log m + 2 log x n = 1 x Λ n m = 1 x n Λ m ψ x n m
138 135 51 addcomd x 1 +∞ 2 log x n = 1 x Λ n m = 1 x n Λ m log m + ψ x log x = ψ x log x + 2 log x n = 1 x Λ n m = 1 x n Λ m log m
139 138 oveq1d x 1 +∞ 2 log x n = 1 x Λ n m = 1 x n Λ m log m + ψ x log x - ψ x log x 2 log x n = 1 x Λ n m = 1 x n Λ m ψ x n m = ψ x log x + 2 log x n = 1 x Λ n m = 1 x n Λ m log m - ψ x log x 2 log x n = 1 x Λ n m = 1 x n Λ m ψ x n m
140 87 recnd x 1 +∞ n 1 x m 1 x n Λ m
141 89 recnd x 1 +∞ n 1 x m 1 x n log m
142 126 recnd x 1 +∞ n 1 x m 1 x n ψ x n m
143 140 141 142 adddid x 1 +∞ n 1 x m 1 x n Λ m log m + ψ x n m = Λ m log m + Λ m ψ x n m
144 143 sumeq2dv x 1 +∞ n 1 x m = 1 x n Λ m log m + ψ x n m = m = 1 x n Λ m log m + Λ m ψ x n m
145 127 recnd x 1 +∞ n 1 x m 1 x n Λ m ψ x n m
146 80 91 145 fsumadd x 1 +∞ n 1 x m = 1 x n Λ m log m + Λ m ψ x n m = m = 1 x n Λ m log m + m = 1 x n Λ m ψ x n m
147 144 146 eqtrd x 1 +∞ n 1 x m = 1 x n Λ m log m + ψ x n m = m = 1 x n Λ m log m + m = 1 x n Λ m ψ x n m
148 147 oveq2d x 1 +∞ n 1 x Λ n m = 1 x n Λ m log m + ψ x n m = Λ n m = 1 x n Λ m log m + m = 1 x n Λ m ψ x n m
149 113 recnd x 1 +∞ n 1 x m = 1 x n Λ m log m
150 128 recnd x 1 +∞ n 1 x m = 1 x n Λ m ψ x n m
151 84 149 150 adddid x 1 +∞ n 1 x Λ n m = 1 x n Λ m log m + m = 1 x n Λ m ψ x n m = Λ n m = 1 x n Λ m log m + Λ n m = 1 x n Λ m ψ x n m
152 148 151 eqtrd x 1 +∞ n 1 x Λ n m = 1 x n Λ m log m + ψ x n m = Λ n m = 1 x n Λ m log m + Λ n m = 1 x n Λ m ψ x n m
153 152 sumeq2dv x 1 +∞ n = 1 x Λ n m = 1 x n Λ m log m + ψ x n m = n = 1 x Λ n m = 1 x n Λ m log m + Λ n m = 1 x n Λ m ψ x n m
154 114 recnd x 1 +∞ n 1 x Λ n m = 1 x n Λ m log m
155 129 recnd x 1 +∞ n 1 x Λ n m = 1 x n Λ m ψ x n m
156 10 154 155 fsumadd x 1 +∞ n = 1 x Λ n m = 1 x n Λ m log m + Λ n m = 1 x n Λ m ψ x n m = n = 1 x Λ n m = 1 x n Λ m log m + n = 1 x Λ n m = 1 x n Λ m ψ x n m
157 153 156 eqtrd x 1 +∞ n = 1 x Λ n m = 1 x n Λ m log m + ψ x n m = n = 1 x Λ n m = 1 x n Λ m log m + n = 1 x Λ n m = 1 x n Λ m ψ x n m
158 157 oveq2d x 1 +∞ 2 log x n = 1 x Λ n m = 1 x n Λ m log m + ψ x n m = 2 log x n = 1 x Λ n m = 1 x n Λ m log m + n = 1 x Λ n m = 1 x n Λ m ψ x n m
159 9 recnd x 1 +∞ 2 log x
160 115 recnd x 1 +∞ n = 1 x Λ n m = 1 x n Λ m log m
161 130 recnd x 1 +∞ n = 1 x Λ n m = 1 x n Λ m ψ x n m
162 159 160 161 adddid x 1 +∞ 2 log x n = 1 x Λ n m = 1 x n Λ m log m + n = 1 x Λ n m = 1 x n Λ m ψ x n m = 2 log x n = 1 x Λ n m = 1 x n Λ m log m + 2 log x n = 1 x Λ n m = 1 x n Λ m ψ x n m
163 158 162 eqtrd x 1 +∞ 2 log x n = 1 x Λ n m = 1 x n Λ m log m + ψ x n m = 2 log x n = 1 x Λ n m = 1 x n Λ m log m + 2 log x n = 1 x Λ n m = 1 x n Λ m ψ x n m
164 137 139 163 3eqtr4d x 1 +∞ 2 log x n = 1 x Λ n m = 1 x n Λ m log m + ψ x log x - ψ x log x 2 log x n = 1 x Λ n m = 1 x n Λ m ψ x n m = 2 log x n = 1 x Λ n m = 1 x n Λ m log m + ψ x n m
165 164 oveq1d x 1 +∞ 2 log x n = 1 x Λ n m = 1 x n Λ m log m + ψ x log x - ψ x log x 2 log x n = 1 x Λ n m = 1 x n Λ m ψ x n m x = 2 log x n = 1 x Λ n m = 1 x n Λ m log m + ψ x n m x
166 117 recnd x 1 +∞ 2 log x n = 1 x Λ n m = 1 x n Λ m log m + ψ x log x
167 51 136 subcld x 1 +∞ ψ x log x 2 log x n = 1 x Λ n m = 1 x n Λ m ψ x n m
168 166 167 46 47 divsubdird x 1 +∞ 2 log x n = 1 x Λ n m = 1 x n Λ m log m + ψ x log x - ψ x log x 2 log x n = 1 x Λ n m = 1 x n Λ m ψ x n m x = 2 log x n = 1 x Λ n m = 1 x n Λ m log m + ψ x log x x ψ x log x 2 log x n = 1 x Λ n m = 1 x n Λ m ψ x n m x
169 2cnd x 1 +∞ 2
170 89 126 readdcld x 1 +∞ n 1 x m 1 x n log m + ψ x n m
171 87 170 remulcld x 1 +∞ n 1 x m 1 x n Λ m log m + ψ x n m
172 80 171 fsumrecl x 1 +∞ n 1 x m = 1 x n Λ m log m + ψ x n m
173 83 172 remulcld x 1 +∞ n 1 x Λ n m = 1 x n Λ m log m + ψ x n m
174 10 173 fsumrecl x 1 +∞ n = 1 x Λ n m = 1 x n Λ m log m + ψ x n m
175 174 recnd x 1 +∞ n = 1 x Λ n m = 1 x n Λ m log m + ψ x n m
176 169 175 mulcld x 1 +∞ 2 n = 1 x Λ n m = 1 x n Λ m log m + ψ x n m
177 36 recnd x 1 +∞ log x
178 8 rpne0d x 1 +∞ log x 0
179 176 177 46 178 47 divdiv1d x 1 +∞ 2 n = 1 x Λ n m = 1 x n Λ m log m + ψ x n m log x x = 2 n = 1 x Λ n m = 1 x n Λ m log m + ψ x n m log x x
180 177 46 mulcomd x 1 +∞ log x x = x log x
181 180 oveq2d x 1 +∞ 2 n = 1 x Λ n m = 1 x n Λ m log m + ψ x n m log x x = 2 n = 1 x Λ n m = 1 x n Λ m log m + ψ x n m x log x
182 179 181 eqtrd x 1 +∞ 2 n = 1 x Λ n m = 1 x n Λ m log m + ψ x n m log x x = 2 n = 1 x Λ n m = 1 x n Λ m log m + ψ x n m x log x
183 169 175 177 178 div23d x 1 +∞ 2 n = 1 x Λ n m = 1 x n Λ m log m + ψ x n m log x = 2 log x n = 1 x Λ n m = 1 x n Λ m log m + ψ x n m
184 183 oveq1d x 1 +∞ 2 n = 1 x Λ n m = 1 x n Λ m log m + ψ x n m log x x = 2 log x n = 1 x Λ n m = 1 x n Λ m log m + ψ x n m x
185 31 8 rpmulcld x 1 +∞ x log x +
186 185 rpcnd x 1 +∞ x log x
187 185 rpne0d x 1 +∞ x log x 0
188 169 175 186 187 divassd x 1 +∞ 2 n = 1 x Λ n m = 1 x n Λ m log m + ψ x n m x log x = 2 n = 1 x Λ n m = 1 x n Λ m log m + ψ x n m x log x
189 182 184 188 3eqtr3d x 1 +∞ 2 log x n = 1 x Λ n m = 1 x n Λ m log m + ψ x n m x = 2 n = 1 x Λ n m = 1 x n Λ m log m + ψ x n m x log x
190 165 168 189 3eqtr3d x 1 +∞ 2 log x n = 1 x Λ n m = 1 x n Λ m log m + ψ x log x x ψ x log x 2 log x n = 1 x Λ n m = 1 x n Λ m ψ x n m x = 2 n = 1 x Λ n m = 1 x n Λ m log m + ψ x n m x log x
191 190 oveq1d x 1 +∞ 2 log x n = 1 x Λ n m = 1 x n Λ m log m + ψ x log x x - ψ x log x 2 log x n = 1 x Λ n m = 1 x n Λ m ψ x n m x - 2 log x = 2 n = 1 x Λ n m = 1 x n Λ m log m + ψ x n m x log x 2 log x
192 118 recnd x 1 +∞ 2 log x n = 1 x Λ n m = 1 x n Λ m log m + ψ x log x x
193 192 42 134 sub32d x 1 +∞ 2 log x n = 1 x Λ n m = 1 x n Λ m log m + ψ x log x x - 2 log x - ψ x log x 2 log x n = 1 x Λ n m = 1 x n Λ m ψ x n m x = 2 log x n = 1 x Λ n m = 1 x n Λ m log m + ψ x log x x - ψ x log x 2 log x n = 1 x Λ n m = 1 x n Λ m ψ x n m x - 2 log x
194 174 185 rerpdivcld x 1 +∞ n = 1 x Λ n m = 1 x n Λ m log m + ψ x n m x log x
195 194 recnd x 1 +∞ n = 1 x Λ n m = 1 x n Λ m log m + ψ x n m x log x
196 169 195 177 subdid x 1 +∞ 2 n = 1 x Λ n m = 1 x n Λ m log m + ψ x n m x log x log x = 2 n = 1 x Λ n m = 1 x n Λ m log m + ψ x n m x log x 2 log x
197 191 193 196 3eqtr4d x 1 +∞ 2 log x n = 1 x Λ n m = 1 x n Λ m log m + ψ x log x x - 2 log x - ψ x log x 2 log x n = 1 x Λ n m = 1 x n Λ m ψ x n m x = 2 n = 1 x Λ n m = 1 x n Λ m log m + ψ x n m x log x log x
198 197 mpteq2dva x 1 +∞ 2 log x n = 1 x Λ n m = 1 x n Λ m log m + ψ x log x x - 2 log x - ψ x log x 2 log x n = 1 x Λ n m = 1 x n Λ m ψ x n m x = x 1 +∞ 2 n = 1 x Λ n m = 1 x n Λ m log m + ψ x n m x log x log x
199 194 36 resubcld x 1 +∞ n = 1 x Λ n m = 1 x n Λ m log m + ψ x n m x log x log x
200 ioossre 1 +∞
201 2cnd 2
202 o1const 1 +∞ 2 x 1 +∞ 2 𝑂1
203 200 201 202 sylancr x 1 +∞ 2 𝑂1
204 selbergb c + y 1 +∞ i = 1 y Λ i log i + ψ y i y 2 log y c
205 simpl c + y 1 +∞ i = 1 y Λ i log i + ψ y i y 2 log y c c +
206 simpr c + y 1 +∞ i = 1 y Λ i log i + ψ y i y 2 log y c y 1 +∞ i = 1 y Λ i log i + ψ y i y 2 log y c
207 205 206 selberg4lem1 c + y 1 +∞ i = 1 y Λ i log i + ψ y i y 2 log y c x 1 +∞ n = 1 x Λ n m = 1 x n Λ m log m + ψ x n m x log x log x 𝑂1
208 207 rexlimiva c + y 1 +∞ i = 1 y Λ i log i + ψ y i y 2 log y c x 1 +∞ n = 1 x Λ n m = 1 x n Λ m log m + ψ x n m x log x log x 𝑂1
209 204 208 mp1i x 1 +∞ n = 1 x Λ n m = 1 x n Λ m log m + ψ x n m x log x log x 𝑂1
210 2 199 203 209 o1mul2 x 1 +∞ 2 n = 1 x Λ n m = 1 x n Λ m log m + ψ x n m x log x log x 𝑂1
211 198 210 eqeltrd x 1 +∞ 2 log x n = 1 x Λ n m = 1 x n Λ m log m + ψ x log x x - 2 log x - ψ x log x 2 log x n = 1 x Λ n m = 1 x n Λ m ψ x n m x 𝑂1
212 120 134 211 o1dif x 1 +∞ 2 log x n = 1 x Λ n m = 1 x n Λ m log m + ψ x log x x 2 log x 𝑂1 x 1 +∞ ψ x log x 2 log x n = 1 x Λ n m = 1 x n Λ m ψ x n m x 𝑂1
213 112 212 mpbid x 1 +∞ ψ x log x 2 log x n = 1 x Λ n m = 1 x n Λ m ψ x n m x 𝑂1
214 213 mptru x 1 +∞ ψ x log x 2 log x n = 1 x Λ n m = 1 x n Λ m ψ x n m x 𝑂1