Metamath Proof Explorer


Theorem selberg4r

Description: Selberg's symmetry formula, using the residual of the second Chebyshev function. Equation 10.6.11 of Shapiro, p. 430. (Contributed by Mario Carneiro, 30-May-2016)

Ref Expression
Hypothesis pntrval.r R = a + ψ a a
Assertion selberg4r x 1 +∞ R x log x 2 log x n = 1 x Λ n m = 1 x n Λ m R x n m x 𝑂1

Proof

Step Hyp Ref Expression
1 pntrval.r R = a + ψ a a
2 elioore x 1 +∞ x
3 2 adantl x 1 +∞ x
4 1rp 1 +
5 4 a1i x 1 +∞ 1 +
6 1red x 1 +∞ 1
7 eliooord x 1 +∞ 1 < x x < +∞
8 7 adantl x 1 +∞ 1 < x x < +∞
9 8 simpld x 1 +∞ 1 < x
10 6 3 9 ltled x 1 +∞ 1 x
11 3 5 10 rpgecld x 1 +∞ x +
12 1 pntrval x + R x = ψ x x
13 11 12 syl x 1 +∞ R x = ψ x x
14 13 oveq1d x 1 +∞ R x log x = ψ x x log x
15 chpcl x ψ x
16 3 15 syl x 1 +∞ ψ x
17 16 recnd x 1 +∞ ψ x
18 3 recnd x 1 +∞ x
19 11 relogcld x 1 +∞ log x
20 19 recnd x 1 +∞ log x
21 17 18 20 subdird x 1 +∞ ψ x x log x = ψ x log x x log x
22 14 21 eqtrd x 1 +∞ R x log x = ψ x log x x log x
23 11 ad2antrr x 1 +∞ n 1 x m 1 x n x +
24 elfznn n 1 x n
25 24 adantl x 1 +∞ n 1 x n
26 25 nnrpd x 1 +∞ n 1 x n +
27 26 adantr x 1 +∞ n 1 x m 1 x n n +
28 23 27 rpdivcld x 1 +∞ n 1 x m 1 x n x n +
29 elfznn m 1 x n m
30 29 adantl x 1 +∞ n 1 x m 1 x n m
31 30 nnrpd x 1 +∞ n 1 x m 1 x n m +
32 28 31 rpdivcld x 1 +∞ n 1 x m 1 x n x n m +
33 1 pntrval x n m + R x n m = ψ x n m x n m
34 32 33 syl x 1 +∞ n 1 x m 1 x n R x n m = ψ x n m x n m
35 34 oveq2d x 1 +∞ n 1 x m 1 x n Λ m R x n m = Λ m ψ x n m x n m
36 vmacl m Λ m
37 30 36 syl x 1 +∞ n 1 x m 1 x n Λ m
38 37 recnd x 1 +∞ n 1 x m 1 x n Λ m
39 3 adantr x 1 +∞ n 1 x x
40 39 25 nndivred x 1 +∞ n 1 x x n
41 40 adantr x 1 +∞ n 1 x m 1 x n x n
42 41 30 nndivred x 1 +∞ n 1 x m 1 x n x n m
43 chpcl x n m ψ x n m
44 42 43 syl x 1 +∞ n 1 x m 1 x n ψ x n m
45 44 recnd x 1 +∞ n 1 x m 1 x n ψ x n m
46 42 recnd x 1 +∞ n 1 x m 1 x n x n m
47 38 45 46 subdid x 1 +∞ n 1 x m 1 x n Λ m ψ x n m x n m = Λ m ψ x n m Λ m x n m
48 35 47 eqtrd x 1 +∞ n 1 x m 1 x n Λ m R x n m = Λ m ψ x n m Λ m x n m
49 48 sumeq2dv x 1 +∞ n 1 x m = 1 x n Λ m R x n m = m = 1 x n Λ m ψ x n m Λ m x n m
50 fzfid x 1 +∞ n 1 x 1 x n Fin
51 37 44 remulcld x 1 +∞ n 1 x m 1 x n Λ m ψ x n m
52 51 recnd x 1 +∞ n 1 x m 1 x n Λ m ψ x n m
53 38 46 mulcld x 1 +∞ n 1 x m 1 x n Λ m x n m
54 50 52 53 fsumsub x 1 +∞ n 1 x m = 1 x n Λ m ψ x n m Λ m x n m = m = 1 x n Λ m ψ x n m m = 1 x n Λ m x n m
55 49 54 eqtrd x 1 +∞ n 1 x m = 1 x n Λ m R x n m = m = 1 x n Λ m ψ x n m m = 1 x n Λ m x n m
56 55 oveq2d x 1 +∞ n 1 x Λ n m = 1 x n Λ m R x n m = Λ n m = 1 x n Λ m ψ x n m m = 1 x n Λ m x n m
57 vmacl n Λ n
58 25 57 syl x 1 +∞ n 1 x Λ n
59 58 recnd x 1 +∞ n 1 x Λ n
60 50 51 fsumrecl x 1 +∞ n 1 x m = 1 x n Λ m ψ x n m
61 60 recnd x 1 +∞ n 1 x m = 1 x n Λ m ψ x n m
62 50 53 fsumcl x 1 +∞ n 1 x m = 1 x n Λ m x n m
63 59 61 62 subdid x 1 +∞ n 1 x Λ n m = 1 x n Λ m ψ x n m m = 1 x n Λ m x n m = Λ n m = 1 x n Λ m ψ x n m Λ n m = 1 x n Λ m x n m
64 56 63 eqtrd x 1 +∞ n 1 x Λ n m = 1 x n Λ m R x n m = Λ n m = 1 x n Λ m ψ x n m Λ n m = 1 x n Λ m x n m
65 64 sumeq2dv x 1 +∞ n = 1 x Λ n m = 1 x n Λ m R x n m = n = 1 x Λ n m = 1 x n Λ m ψ x n m Λ n m = 1 x n Λ m x n m
66 fzfid x 1 +∞ 1 x Fin
67 58 60 remulcld x 1 +∞ n 1 x Λ n m = 1 x n Λ m ψ x n m
68 67 recnd x 1 +∞ n 1 x Λ n m = 1 x n Λ m ψ x n m
69 59 62 mulcld x 1 +∞ n 1 x Λ n m = 1 x n Λ m x n m
70 66 68 69 fsumsub x 1 +∞ n = 1 x Λ n m = 1 x n Λ m ψ x n m Λ n m = 1 x n Λ m x n m = n = 1 x Λ n m = 1 x n Λ m ψ x n m n = 1 x Λ n m = 1 x n Λ m x n m
71 65 70 eqtrd x 1 +∞ n = 1 x Λ n m = 1 x n Λ m R x n m = n = 1 x Λ n m = 1 x n Λ m ψ x n m n = 1 x Λ n m = 1 x n Λ m x n m
72 71 oveq2d x 1 +∞ 2 log x n = 1 x Λ n m = 1 x n Λ m R x n m = 2 log x n = 1 x Λ n m = 1 x n Λ m ψ x n m n = 1 x Λ n m = 1 x n Λ m x n m
73 2re 2
74 73 a1i x 1 +∞ 2
75 3 9 rplogcld x 1 +∞ log x +
76 74 75 rerpdivcld x 1 +∞ 2 log x
77 76 recnd x 1 +∞ 2 log x
78 66 67 fsumrecl x 1 +∞ n = 1 x Λ n m = 1 x n Λ m ψ x n m
79 78 recnd x 1 +∞ n = 1 x Λ n m = 1 x n Λ m ψ x n m
80 66 69 fsumcl x 1 +∞ n = 1 x Λ n m = 1 x n Λ m x n m
81 77 79 80 subdid x 1 +∞ 2 log x n = 1 x Λ n m = 1 x n Λ m ψ x n m n = 1 x Λ n m = 1 x n Λ m x n m = 2 log x n = 1 x Λ n m = 1 x n Λ m ψ x n m 2 log x n = 1 x Λ n m = 1 x n Λ m x n m
82 72 81 eqtrd x 1 +∞ 2 log x n = 1 x Λ n m = 1 x n Λ m R x n m = 2 log x n = 1 x Λ n m = 1 x n Λ m ψ x n m 2 log x n = 1 x Λ n m = 1 x n Λ m x n m
83 22 82 oveq12d x 1 +∞ R x log x 2 log x n = 1 x Λ n m = 1 x n Λ m R x n m = ψ x log x - x log x - 2 log x n = 1 x Λ n m = 1 x n Λ m ψ x n m 2 log x n = 1 x Λ n m = 1 x n Λ m x n m
84 16 19 remulcld x 1 +∞ ψ x log x
85 84 recnd x 1 +∞ ψ x log x
86 18 20 mulcld x 1 +∞ x log x
87 76 78 remulcld x 1 +∞ 2 log x n = 1 x Λ n m = 1 x n Λ m ψ x n m
88 87 recnd x 1 +∞ 2 log x n = 1 x Λ n m = 1 x n Λ m ψ x n m
89 77 80 mulcld x 1 +∞ 2 log x n = 1 x Λ n m = 1 x n Λ m x n m
90 85 86 88 89 sub4d x 1 +∞ ψ x log x - x log x - 2 log x n = 1 x Λ n m = 1 x n Λ m ψ x n m 2 log x n = 1 x Λ n m = 1 x n Λ m x n m = ψ x log x - 2 log x n = 1 x Λ n m = 1 x n Λ m ψ x n m - x log x 2 log x n = 1 x Λ n m = 1 x n Λ m x n m
91 83 90 eqtrd x 1 +∞ R x log x 2 log x n = 1 x Λ n m = 1 x n Λ m R x n m = ψ x log x - 2 log x n = 1 x Λ n m = 1 x n Λ m ψ x n m - x log x 2 log x n = 1 x Λ n m = 1 x n Λ m x n m
92 91 oveq1d x 1 +∞ R x log x 2 log x n = 1 x Λ n m = 1 x n Λ m R x n m x = ψ x log x - 2 log x n = 1 x Λ n m = 1 x n Λ m ψ x n m - x log x 2 log x n = 1 x Λ n m = 1 x n Λ m x n m x
93 84 87 resubcld x 1 +∞ ψ x log x 2 log x n = 1 x Λ n m = 1 x n Λ m ψ x n m
94 93 recnd x 1 +∞ ψ x log x 2 log x n = 1 x Λ n m = 1 x n Λ m ψ x n m
95 3 19 remulcld x 1 +∞ x log x
96 37 42 remulcld x 1 +∞ n 1 x m 1 x n Λ m x n m
97 50 96 fsumrecl x 1 +∞ n 1 x m = 1 x n Λ m x n m
98 58 97 remulcld x 1 +∞ n 1 x Λ n m = 1 x n Λ m x n m
99 66 98 fsumrecl x 1 +∞ n = 1 x Λ n m = 1 x n Λ m x n m
100 76 99 remulcld x 1 +∞ 2 log x n = 1 x Λ n m = 1 x n Λ m x n m
101 95 100 resubcld x 1 +∞ x log x 2 log x n = 1 x Λ n m = 1 x n Λ m x n m
102 101 recnd x 1 +∞ x log x 2 log x n = 1 x Λ n m = 1 x n Λ m x n m
103 11 rpne0d x 1 +∞ x 0
104 94 102 18 103 divsubdird x 1 +∞ ψ x log x - 2 log x n = 1 x Λ n m = 1 x n Λ m ψ x n m - x log x 2 log x n = 1 x Λ n m = 1 x n Λ m x n m x = ψ x log x 2 log x n = 1 x Λ n m = 1 x n Λ m ψ x n m x x log x 2 log x n = 1 x Λ n m = 1 x n Λ m x n m x
105 95 recnd x 1 +∞ x log x
106 99 recnd x 1 +∞ n = 1 x Λ n m = 1 x n Λ m x n m
107 77 106 mulcld x 1 +∞ 2 log x n = 1 x Λ n m = 1 x n Λ m x n m
108 105 107 18 103 divsubdird x 1 +∞ x log x 2 log x n = 1 x Λ n m = 1 x n Λ m x n m x = x log x x 2 log x n = 1 x Λ n m = 1 x n Λ m x n m x
109 20 18 103 divcan3d x 1 +∞ x log x x = log x
110 77 106 18 103 divassd x 1 +∞ 2 log x n = 1 x Λ n m = 1 x n Λ m x n m x = 2 log x n = 1 x Λ n m = 1 x n Λ m x n m x
111 98 recnd x 1 +∞ n 1 x Λ n m = 1 x n Λ m x n m
112 66 18 111 103 fsumdivc x 1 +∞ n = 1 x Λ n m = 1 x n Λ m x n m x = n = 1 x Λ n m = 1 x n Λ m x n m x
113 41 recnd x 1 +∞ n 1 x m 1 x n x n
114 30 nncnd x 1 +∞ n 1 x m 1 x n m
115 30 nnne0d x 1 +∞ n 1 x m 1 x n m 0
116 113 38 114 115 div12d x 1 +∞ n 1 x m 1 x n x n Λ m m = Λ m x n m
117 18 adantr x 1 +∞ n 1 x x
118 117 adantr x 1 +∞ n 1 x m 1 x n x
119 25 nncnd x 1 +∞ n 1 x n
120 119 adantr x 1 +∞ n 1 x m 1 x n n
121 37 30 nndivred x 1 +∞ n 1 x m 1 x n Λ m m
122 121 recnd x 1 +∞ n 1 x m 1 x n Λ m m
123 25 nnne0d x 1 +∞ n 1 x n 0
124 123 adantr x 1 +∞ n 1 x m 1 x n n 0
125 118 120 122 124 div32d x 1 +∞ n 1 x m 1 x n x n Λ m m = x Λ m m n
126 116 125 eqtr3d x 1 +∞ n 1 x m 1 x n Λ m x n m = x Λ m m n
127 126 oveq1d x 1 +∞ n 1 x m 1 x n Λ m x n m x = x Λ m m n x
128 25 adantr x 1 +∞ n 1 x m 1 x n n
129 121 128 nndivred x 1 +∞ n 1 x m 1 x n Λ m m n
130 129 recnd x 1 +∞ n 1 x m 1 x n Λ m m n
131 103 adantr x 1 +∞ n 1 x x 0
132 131 adantr x 1 +∞ n 1 x m 1 x n x 0
133 130 118 132 divcan3d x 1 +∞ n 1 x m 1 x n x Λ m m n x = Λ m m n
134 127 133 eqtrd x 1 +∞ n 1 x m 1 x n Λ m x n m x = Λ m m n
135 134 sumeq2dv x 1 +∞ n 1 x m = 1 x n Λ m x n m x = m = 1 x n Λ m m n
136 96 recnd x 1 +∞ n 1 x m 1 x n Λ m x n m
137 50 117 136 131 fsumdivc x 1 +∞ n 1 x m = 1 x n Λ m x n m x = m = 1 x n Λ m x n m x
138 50 119 122 123 fsumdivc x 1 +∞ n 1 x m = 1 x n Λ m m n = m = 1 x n Λ m m n
139 135 137 138 3eqtr4d x 1 +∞ n 1 x m = 1 x n Λ m x n m x = m = 1 x n Λ m m n
140 139 oveq2d x 1 +∞ n 1 x Λ n m = 1 x n Λ m x n m x = Λ n m = 1 x n Λ m m n
141 97 recnd x 1 +∞ n 1 x m = 1 x n Λ m x n m
142 59 141 117 131 divassd x 1 +∞ n 1 x Λ n m = 1 x n Λ m x n m x = Λ n m = 1 x n Λ m x n m x
143 50 121 fsumrecl x 1 +∞ n 1 x m = 1 x n Λ m m
144 143 recnd x 1 +∞ n 1 x m = 1 x n Λ m m
145 59 119 144 123 div32d x 1 +∞ n 1 x Λ n n m = 1 x n Λ m m = Λ n m = 1 x n Λ m m n
146 140 142 145 3eqtr4d x 1 +∞ n 1 x Λ n m = 1 x n Λ m x n m x = Λ n n m = 1 x n Λ m m
147 146 sumeq2dv x 1 +∞ n = 1 x Λ n m = 1 x n Λ m x n m x = n = 1 x Λ n n m = 1 x n Λ m m
148 112 147 eqtrd x 1 +∞ n = 1 x Λ n m = 1 x n Λ m x n m x = n = 1 x Λ n n m = 1 x n Λ m m
149 148 oveq2d x 1 +∞ 2 log x n = 1 x Λ n m = 1 x n Λ m x n m x = 2 log x n = 1 x Λ n n m = 1 x n Λ m m
150 110 149 eqtrd x 1 +∞ 2 log x n = 1 x Λ n m = 1 x n Λ m x n m x = 2 log x n = 1 x Λ n n m = 1 x n Λ m m
151 109 150 oveq12d x 1 +∞ x log x x 2 log x n = 1 x Λ n m = 1 x n Λ m x n m x = log x 2 log x n = 1 x Λ n n m = 1 x n Λ m m
152 108 151 eqtrd x 1 +∞ x log x 2 log x n = 1 x Λ n m = 1 x n Λ m x n m x = log x 2 log x n = 1 x Λ n n m = 1 x n Λ m m
153 152 oveq2d x 1 +∞ ψ x log x 2 log x n = 1 x Λ n m = 1 x n Λ m ψ x n m x x log x 2 log x n = 1 x Λ n m = 1 x n Λ m x n m x = ψ x log x 2 log x n = 1 x Λ n m = 1 x n Λ m ψ x n m x log x 2 log x n = 1 x Λ n n m = 1 x n Λ m m
154 94 18 103 divcld x 1 +∞ ψ x log x 2 log x n = 1 x Λ n m = 1 x n Λ m ψ x n m x
155 58 25 nndivred x 1 +∞ n 1 x Λ n n
156 155 143 remulcld x 1 +∞ n 1 x Λ n n m = 1 x n Λ m m
157 66 156 fsumrecl x 1 +∞ n = 1 x Λ n n m = 1 x n Λ m m
158 76 157 remulcld x 1 +∞ 2 log x n = 1 x Λ n n m = 1 x n Λ m m
159 158 recnd x 1 +∞ 2 log x n = 1 x Λ n n m = 1 x n Λ m m
160 154 20 159 subsub2d x 1 +∞ ψ x log x 2 log x n = 1 x Λ n m = 1 x n Λ m ψ x n m x log x 2 log x n = 1 x Λ n n m = 1 x n Λ m m = ψ x log x 2 log x n = 1 x Λ n m = 1 x n Λ m ψ x n m x + 2 log x n = 1 x Λ n n m = 1 x n Λ m m - log x
161 153 160 eqtrd x 1 +∞ ψ x log x 2 log x n = 1 x Λ n m = 1 x n Λ m ψ x n m x x log x 2 log x n = 1 x Λ n m = 1 x n Λ m x n m x = ψ x log x 2 log x n = 1 x Λ n m = 1 x n Λ m ψ x n m x + 2 log x n = 1 x Λ n n m = 1 x n Λ m m - log x
162 104 161 eqtrd x 1 +∞ ψ x log x - 2 log x n = 1 x Λ n m = 1 x n Λ m ψ x n m - x log x 2 log x n = 1 x Λ n m = 1 x n Λ m x n m x = ψ x log x 2 log x n = 1 x Λ n m = 1 x n Λ m ψ x n m x + 2 log x n = 1 x Λ n n m = 1 x n Λ m m - log x
163 92 162 eqtrd x 1 +∞ R x log x 2 log x n = 1 x Λ n m = 1 x n Λ m R x n m x = ψ x log x 2 log x n = 1 x Λ n m = 1 x n Λ m ψ x n m x + 2 log x n = 1 x Λ n n m = 1 x n Λ m m - log x
164 163 mpteq2dva x 1 +∞ R x log x 2 log x n = 1 x Λ n m = 1 x n Λ m R x n m x = x 1 +∞ ψ x log x 2 log x n = 1 x Λ n m = 1 x n Λ m ψ x n m x + 2 log x n = 1 x Λ n n m = 1 x n Λ m m - log x
165 93 11 rerpdivcld x 1 +∞ ψ x log x 2 log x n = 1 x Λ n m = 1 x n Λ m ψ x n m x
166 158 19 resubcld x 1 +∞ 2 log x n = 1 x Λ n n m = 1 x n Λ m m log x
167 selberg4 x 1 +∞ ψ x log x 2 log x n = 1 x Λ n m = 1 x n Λ m ψ x n m x 𝑂1
168 167 a1i x 1 +∞ ψ x log x 2 log x n = 1 x Λ n m = 1 x n Λ m ψ x n m x 𝑂1
169 2cnd x 1 +∞ 2
170 157 75 rerpdivcld x 1 +∞ n = 1 x Λ n n m = 1 x n Λ m m log x
171 170 recnd x 1 +∞ n = 1 x Λ n n m = 1 x n Λ m m log x
172 19 rehalfcld x 1 +∞ log x 2
173 172 recnd x 1 +∞ log x 2
174 169 171 173 subdid x 1 +∞ 2 n = 1 x Λ n n m = 1 x n Λ m m log x log x 2 = 2 n = 1 x Λ n n m = 1 x n Λ m m log x 2 log x 2
175 157 recnd x 1 +∞ n = 1 x Λ n n m = 1 x n Λ m m
176 75 rpne0d x 1 +∞ log x 0
177 169 20 175 176 div32d x 1 +∞ 2 log x n = 1 x Λ n n m = 1 x n Λ m m = 2 n = 1 x Λ n n m = 1 x n Λ m m log x
178 177 eqcomd x 1 +∞ 2 n = 1 x Λ n n m = 1 x n Λ m m log x = 2 log x n = 1 x Λ n n m = 1 x n Λ m m
179 2ne0 2 0
180 179 a1i x 1 +∞ 2 0
181 20 169 180 divcan2d x 1 +∞ 2 log x 2 = log x
182 178 181 oveq12d x 1 +∞ 2 n = 1 x Λ n n m = 1 x n Λ m m log x 2 log x 2 = 2 log x n = 1 x Λ n n m = 1 x n Λ m m log x
183 174 182 eqtrd x 1 +∞ 2 n = 1 x Λ n n m = 1 x n Λ m m log x log x 2 = 2 log x n = 1 x Λ n n m = 1 x n Λ m m log x
184 183 mpteq2dva x 1 +∞ 2 n = 1 x Λ n n m = 1 x n Λ m m log x log x 2 = x 1 +∞ 2 log x n = 1 x Λ n n m = 1 x n Λ m m log x
185 170 172 resubcld x 1 +∞ n = 1 x Λ n n m = 1 x n Λ m m log x log x 2
186 ioossre 1 +∞
187 2cnd 2
188 o1const 1 +∞ 2 x 1 +∞ 2 𝑂1
189 186 187 188 sylancr x 1 +∞ 2 𝑂1
190 2vmadivsum x 1 +∞ n = 1 x Λ n n m = 1 x n Λ m m log x log x 2 𝑂1
191 190 a1i x 1 +∞ n = 1 x Λ n n m = 1 x n Λ m m log x log x 2 𝑂1
192 74 185 189 191 o1mul2 x 1 +∞ 2 n = 1 x Λ n n m = 1 x n Λ m m log x log x 2 𝑂1
193 184 192 eqeltrrd x 1 +∞ 2 log x n = 1 x Λ n n m = 1 x n Λ m m log x 𝑂1
194 165 166 168 193 o1add2 x 1 +∞ ψ x log x 2 log x n = 1 x Λ n m = 1 x n Λ m ψ x n m x + 2 log x n = 1 x Λ n n m = 1 x n Λ m m - log x 𝑂1
195 164 194 eqeltrd x 1 +∞ R x log x 2 log x n = 1 x Λ n m = 1 x n Λ m R x n m x 𝑂1
196 195 mptru x 1 +∞ R x log x 2 log x n = 1 x Λ n m = 1 x n Λ m R x n m x 𝑂1