Metamath Proof Explorer


Theorem selberglem1

Description: Lemma for selberg . Estimation of the asymptotic part of selberglem3 . (Contributed by Mario Carneiro, 20-May-2016)

Ref Expression
Hypothesis selberglem1.t T = log x n 2 + 2 - 2 log x n n
Assertion selberglem1 x + n = 1 x μ n T 2 log x 𝑂1

Proof

Step Hyp Ref Expression
1 selberglem1.t T = log x n 2 + 2 - 2 log x n n
2 fzfid x + 1 x Fin
3 elfznn n 1 x n
4 3 adantl x + n 1 x n
5 mucl n μ n
6 4 5 syl x + n 1 x μ n
7 6 zred x + n 1 x μ n
8 7 4 nndivred x + n 1 x μ n n
9 8 recnd x + n 1 x μ n n
10 3 nnrpd n 1 x n +
11 rpdivcl x + n + x n +
12 10 11 sylan2 x + n 1 x x n +
13 relogcl x n + log x n
14 12 13 syl x + n 1 x log x n
15 14 recnd x + n 1 x log x n
16 15 sqcld x + n 1 x log x n 2
17 9 16 mulcld x + n 1 x μ n n log x n 2
18 2 17 fsumcl x + n = 1 x μ n n log x n 2
19 2cn 2
20 19 a1i x + n 1 x 2
21 20 15 mulcld x + n 1 x 2 log x n
22 20 21 subcld x + n 1 x 2 2 log x n
23 9 22 mulcld x + n 1 x μ n n 2 2 log x n
24 2 23 fsumcl x + n = 1 x μ n n 2 2 log x n
25 relogcl x + log x
26 25 recnd x + log x
27 mulcl 2 log x 2 log x
28 19 26 27 sylancr x + 2 log x
29 18 24 28 addsubd x + n = 1 x μ n n log x n 2 + n = 1 x μ n n 2 2 log x n - 2 log x = n = 1 x μ n n log x n 2 - 2 log x + n = 1 x μ n n 2 2 log x n
30 1 oveq2i μ n T = μ n log x n 2 + 2 - 2 log x n n
31 6 zcnd x + n 1 x μ n
32 16 22 addcld x + n 1 x log x n 2 + 2 - 2 log x n
33 4 nnrpd x + n 1 x n +
34 33 rpcnne0d x + n 1 x n n 0
35 divass μ n log x n 2 + 2 - 2 log x n n n 0 μ n log x n 2 + 2 - 2 log x n n = μ n log x n 2 + 2 - 2 log x n n
36 div23 μ n log x n 2 + 2 - 2 log x n n n 0 μ n log x n 2 + 2 - 2 log x n n = μ n n log x n 2 + 2 - 2 log x n
37 35 36 eqtr3d μ n log x n 2 + 2 - 2 log x n n n 0 μ n log x n 2 + 2 - 2 log x n n = μ n n log x n 2 + 2 - 2 log x n
38 31 32 34 37 syl3anc x + n 1 x μ n log x n 2 + 2 - 2 log x n n = μ n n log x n 2 + 2 - 2 log x n
39 9 16 22 adddid x + n 1 x μ n n log x n 2 + 2 - 2 log x n = μ n n log x n 2 + μ n n 2 2 log x n
40 38 39 eqtrd x + n 1 x μ n log x n 2 + 2 - 2 log x n n = μ n n log x n 2 + μ n n 2 2 log x n
41 30 40 syl5eq x + n 1 x μ n T = μ n n log x n 2 + μ n n 2 2 log x n
42 41 sumeq2dv x + n = 1 x μ n T = n = 1 x μ n n log x n 2 + μ n n 2 2 log x n
43 2 17 23 fsumadd x + n = 1 x μ n n log x n 2 + μ n n 2 2 log x n = n = 1 x μ n n log x n 2 + n = 1 x μ n n 2 2 log x n
44 42 43 eqtrd x + n = 1 x μ n T = n = 1 x μ n n log x n 2 + n = 1 x μ n n 2 2 log x n
45 44 oveq1d x + n = 1 x μ n T 2 log x = n = 1 x μ n n log x n 2 + n = 1 x μ n n 2 2 log x n - 2 log x
46 19 a1i x + 2
47 9 15 mulcld x + n 1 x μ n n log x n
48 9 47 subcld x + n 1 x μ n n μ n n log x n
49 2 46 48 fsummulc2 x + 2 n = 1 x μ n n μ n n log x n = n = 1 x 2 μ n n μ n n log x n
50 2 9 47 fsumsub x + n = 1 x μ n n μ n n log x n = n = 1 x μ n n n = 1 x μ n n log x n
51 50 oveq2d x + 2 n = 1 x μ n n μ n n log x n = 2 n = 1 x μ n n n = 1 x μ n n log x n
52 20 9 mulcomd x + n 1 x 2 μ n n = μ n n 2
53 20 9 15 mul12d x + n 1 x 2 μ n n log x n = μ n n 2 log x n
54 52 53 oveq12d x + n 1 x 2 μ n n 2 μ n n log x n = μ n n 2 μ n n 2 log x n
55 20 9 47 subdid x + n 1 x 2 μ n n μ n n log x n = 2 μ n n 2 μ n n log x n
56 9 20 21 subdid x + n 1 x μ n n 2 2 log x n = μ n n 2 μ n n 2 log x n
57 54 55 56 3eqtr4d x + n 1 x 2 μ n n μ n n log x n = μ n n 2 2 log x n
58 57 sumeq2dv x + n = 1 x 2 μ n n μ n n log x n = n = 1 x μ n n 2 2 log x n
59 49 51 58 3eqtr3d x + 2 n = 1 x μ n n n = 1 x μ n n log x n = n = 1 x μ n n 2 2 log x n
60 59 oveq2d x + n = 1 x μ n n log x n 2 - 2 log x + 2 n = 1 x μ n n n = 1 x μ n n log x n = n = 1 x μ n n log x n 2 - 2 log x + n = 1 x μ n n 2 2 log x n
61 29 45 60 3eqtr4d x + n = 1 x μ n T 2 log x = n = 1 x μ n n log x n 2 - 2 log x + 2 n = 1 x μ n n n = 1 x μ n n log x n
62 61 mpteq2ia x + n = 1 x μ n T 2 log x = x + n = 1 x μ n n log x n 2 - 2 log x + 2 n = 1 x μ n n n = 1 x μ n n log x n
63 ovexd x + n = 1 x μ n n log x n 2 2 log x V
64 ovexd x + 2 n = 1 x μ n n n = 1 x μ n n log x n V
65 mulog2sum x + n = 1 x μ n n log x n 2 2 log x 𝑂1
66 65 a1i x + n = 1 x μ n n log x n 2 2 log x 𝑂1
67 2ex 2 V
68 67 a1i x + 2 V
69 ovexd x + n = 1 x μ n n n = 1 x μ n n log x n V
70 rpssre +
71 o1const + 2 x + 2 𝑂1
72 70 19 71 mp2an x + 2 𝑂1
73 72 a1i x + 2 𝑂1
74 reex V
75 74 70 ssexi + V
76 75 a1i + V
77 sumex n = 1 x μ n n V
78 77 a1i x + n = 1 x μ n n V
79 sumex n = 1 x μ n n log x n V
80 79 a1i x + n = 1 x μ n n log x n V
81 eqidd x + n = 1 x μ n n = x + n = 1 x μ n n
82 eqidd x + n = 1 x μ n n log x n = x + n = 1 x μ n n log x n
83 76 78 80 81 82 offval2 x + n = 1 x μ n n f x + n = 1 x μ n n log x n = x + n = 1 x μ n n n = 1 x μ n n log x n
84 mudivsum x + n = 1 x μ n n 𝑂1
85 mulogsum x + n = 1 x μ n n log x n 𝑂1
86 o1sub x + n = 1 x μ n n 𝑂1 x + n = 1 x μ n n log x n 𝑂1 x + n = 1 x μ n n f x + n = 1 x μ n n log x n 𝑂1
87 84 85 86 mp2an x + n = 1 x μ n n f x + n = 1 x μ n n log x n 𝑂1
88 83 87 eqeltrrdi x + n = 1 x μ n n n = 1 x μ n n log x n 𝑂1
89 68 69 73 88 o1mul2 x + 2 n = 1 x μ n n n = 1 x μ n n log x n 𝑂1
90 63 64 66 89 o1add2 x + n = 1 x μ n n log x n 2 - 2 log x + 2 n = 1 x μ n n n = 1 x μ n n log x n 𝑂1
91 90 mptru x + n = 1 x μ n n log x n 2 - 2 log x + 2 n = 1 x μ n n n = 1 x μ n n log x n 𝑂1
92 62 91 eqeltri x + n = 1 x μ n T 2 log x 𝑂1